3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Onsite detection of plant viruses using isothermal amplification assays

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Plant diseases caused by viruses limit crop production and quality, resulting in significant losses. However, options for managing viruses are limited; for example, as systemic obligate parasites, they cannot be killed by chemicals. Sensitive, robust, affordable diagnostic assays are needed to detect the presence of viruses in plant materials such as seeds, vegetative parts, insect vectors, or alternative hosts and then prevent or limit their introduction into the field by destroying infected plant materials or controlling insect hosts. Diagnostics based on biological and physical properties are not very sensitive and are time‐consuming, but assays based on viral proteins and nucleic acids are more specific, sensitive, and rapid. However, most such assays require laboratories with sophisticated equipment and technical skills. By contrast, isothermal‐based assays such as loop‐mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) are simple, easy to perform, reliable, specific, and rapid and do not require specialized equipment or skills. Isothermal amplification assays can be performed using lateral flow devices, making them suitable for onsite detection or testing in the field. To overcome non‐specific amplification and cross‐contamination issues, isothermal amplification assays can be coupled with CRISPR/Cas technology. Indeed, the collateral activity associated with some CRISPR/Cas systems has been successfully harnessed for visual detection of plant viruses. Here, we briefly describe traditional methods for detecting viruses and then examine the various isothermal assays that are being harnessed to detect viruses.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loop-mediated isothermal amplification of DNA.

            T. Notomi (2000)
            We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem-loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 10(9) copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

              The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                magdy.mahfouz@kaust.edu.sa
                Journal
                Plant Biotechnol J
                Plant Biotechnol J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                11 July 2022
                October 2022
                : 20
                : 10 ( doiID: 10.1111/pbi.v20.10 )
                : 1859-1873
                Affiliations
                [ 1 ] ICAR‐Indian Institute of Spices Research Kozhikode Kerala India
                [ 2 ] Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences King Abdullah University of Science and Technology Thuwal Saudi Arabia
                Author notes
                [*] [* ] Correspondence (Tel +(966) 12 808 2761; fax +(966) 12 802 0020; email magdy.mahfouz@ 123456kaust.edu.sa )
                Author information
                https://orcid.org/0000-0002-0616-6365
                Article
                PBI13871 PBI-00329-2022.R1
                10.1111/pbi.13871
                9491455
                35689490
                36f11433-d087-426f-a480-1137644c1304
                © 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 16 May 2022
                : 20 March 2022
                : 02 June 2022
                Page count
                Figures: 5, Tables: 1, Pages: 1873, Words: 15006
                Funding
                Funded by: King Abdullah University of Science and Technology , doi 10.13039/501100004052;
                Award ID: BAS/1/1035‐01‐01
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                October 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.8 mode:remove_FC converted:21.09.2022

                Biotechnology
                isothermal amplification,nucleic acid detection,lamp,rpa,crispr/cas‐based diagnosis,onsite diagnosis

                Comments

                Comment on this article