5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          The role and regulation of adenosine in the central nervous system.

          Adenosine is a modulator that has a pervasive and generally inhibitory effect on neuronal activity. Tonic activation of adenosine receptors by adenosine that is normally present in the extracellular space in brain tissue leads to inhibitory effects that appear to be mediated by both adenosine A1 and A2A receptors. Relief from this tonic inhibition by receptor antagonists such as caffeine accounts for the excitatory actions of these agents. Characterization of the effects of adenosine receptor agonists and antagonists has led to numerous hypotheses concerning the role of this nucleoside. Previous work has established a role for adenosine in a diverse array of neural phenomena, which include regulation of sleep and the level of arousal, neuroprotection, regulation of seizure susceptibility, locomotor effects, analgesia, mediation of the effects of ethanol, and chronic drug use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adenosine receptors as drug targets--what are the challenges?

            Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors--either directly or indirectly--have now entered the clinic. However, only one adenosine receptor-specific agent--the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma)--has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes

              Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4–60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-μm-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                07 December 2018
                2018
                : 12
                : 482
                Affiliations
                [1] 1Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health , Portland, OR, United States
                [2] 2Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, United States
                [3] 3Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University) , Chongqing, China
                Author notes

                Edited by: Mauricio Antonio Retamal, Universidad del Desarrollo, Chile

                Reviewed by: Davide Lecca, University of Milan, Italy; Annalisa Buffo, Università degli Studi di Torino, Italy

                *Correspondence: Hai-Ying Shen, hshen@ 123456downeurobiology.org Lan Xiao, xiaolan35@ 123456hotmail.com
                Article
                10.3389/fncel.2018.00482
                6292987
                30581380
                36e62811-d0d7-4418-a77b-bdf220d4da2d
                Copyright © 2018 Shen, Huang, Reemmer and Xiao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 July 2018
                : 26 November 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 127, Pages: 12, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Neuroscience
                Review

                Neurosciences
                adenosine receptor,oligodendroglial differentiation,demyelination,neurotransmitter,autism

                Comments

                Comment on this article