20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Authentication of Herbal Medicines Dipsacus asper and Phlomoides umbrosa Using DNA Barcodes, Chloroplast Genome, and Sequence Characterized Amplified Region (SCAR) Marker

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dried roots of Dipsacus asper (Caprifoliaceae) are used as important traditional herbal medicines in Korea. However, the roots are often used as a mixture or contaminated with Dipsacus japonicus in Korean herbal markets. Furthermore, the dried roots of Phlomoides umbrosa (Lamiaceae) are used indiscriminately with those of D. asper, with the confusing Korean names of Sok-Dan and Han-Sok-Dan for D. asper and P. umbrosa, respectively. Although D. asper and P. umbrosa are important herbal medicines, the molecular marker and genomic information available for these species are limited. In this study, we analysed DNA barcodes to distinguish among D. asper, D. japonicus, and P. umbrosa and sequenced the chloroplast (CP) genomes of D. asper and D. japonicus. The CP genomes of D. asper and D. japonicus were 160,530 and 160,371 bp in length, respectively, and were highly divergent from those of the other Caprifoliaceae species. Phylogenetic analysis revealed a monophyletic group within Caprifoliaceae. We also developed a novel sequence characterised amplified region (SCAR) markers to distinguish among D. asper, D. japonicus, and P. umbrosa. Our results provide important taxonomic, phylogenetic, and evolutionary information on the Dipsacus species. The SCAR markers developed here will be useful for the authentication of herbal medicines.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of DNA barcodes to identify flowering plants.

            Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Windows 95/98/NT

                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                17 July 2018
                July 2018
                : 23
                : 7
                : 1748
                Affiliations
                [1 ]Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea; pik6885@ 123456kiom.re.kr (I.P.); sgyang81@ 123456kiom.re.kr (S.Y.); ukgene@ 123456kiom.re.kr (W.J.K.); pureum322@ 123456kiom.re.kr (P.N.)
                [2 ]Phyzen Genomics Institute, Seongnam 13558, Korea; dlgusdh88@ 123456phyzen.com
                Author notes
                [* ]Correspondence: bcmoon@ 123456kiom.re.kr ; Tel.: +82-42-868-9530
                Author information
                https://orcid.org/0000-0002-5374-6274
                Article
                molecules-23-01748
                10.3390/molecules23071748
                6099718
                30018232
                36e33813-bf91-4423-be97-b585902db15a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2018
                : 15 July 2018
                Categories
                Article

                plant species identification,oriental medicine,plastid,dipsaci radix,phlomidis radix

                Comments

                Comment on this article