Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear–cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

            Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer.

              On the basis of a previous meta-analysis, the International Adjuvant Lung Cancer Trial was designed to evaluate the effect of cisplatin-based adjuvant chemotherapy on survival after complete resection of non-small-cell lung cancer. We randomly assigned patients either to three or four cycles of cisplatin-based chemotherapy or to observation. Before randomization, each center determined the pathological stages to include, its policy for chemotherapy (the dose of cisplatin and the drug to be combined with cisplatin), and its postoperative radiotherapy policy. The main end point was overall survival. A total of 1867 patients underwent randomization; 36.5 percent had pathological stage I disease, 24.2 percent stage II, and 39.3 percent stage III. The drug allocated with cisplatin was etoposide in 56.5 percent of patients, vinorelbine in 26.8 percent, vinblastine in 11.0 percent, and vindesine in 5.8 percent. Of the 932 patients assigned to chemotherapy, 73.8 percent received at least 240 mg of cisplatin per square meter of body-surface area. The median duration of follow-up was 56 months. Patients assigned to chemotherapy had a significantly higher survival rate than those assigned to observation (44.5 percent vs. 40.4 percent at five years [469 deaths vs. 504]; hazard ratio for death, 0.86; 95 percent confidence interval, 0.76 to 0.98; P<0.03). Patients assigned to chemotherapy also had a significantly higher disease-free survival rate than those assigned to observation (39.4 percent vs. 34.3 percent at five years [518 events vs. 577]; hazard ratio, 0.83; 95 percent confidence interval, 0.74 to 0.94; P<0.003). There were no significant interactions with prespecified factors. Seven patients (0.8 percent) died of chemotherapy-induced toxic effects. Cisplatin-based adjuvant chemotherapy improves survival among patients with completely resected non-small-cell lung cancer. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                19 March 2020
                March 2020
                : 12
                : 3
                : 727
                Affiliations
                [1 ]Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; kdy6459@ 123456naver.com (D.Y.K.); nipinsp@ 123456gmail.com (N.S.); eses0706@ 123456naver.com (E.S.J.); rugambalex@ 123456gmail.com (A.R.)
                [2 ]Department of Emergency Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea; kuhemhdy@ 123456gmail.com
                [3 ]Division of Hematology-Oncology, Department of Internal Medicine, Konkuk University Medical Center, Seoul 05029, Korea; mlee@ 123456kuh.ac.kr
                [4 ]Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-0808, Japan; jiseungy@ 123456pop.med.hokudai.ac.jp
                [5 ]Jilin Green Food Engineering Research Institute, Changchun 130000, Jilin, China; liuqing0523@ 123456hotmail.com
                Author notes
                [* ]Correspondence: jangkj@ 123456konkuk.ac.kr (K.-J.J.); ymyang@ 123456kku.ac.kr (Y.M.Y.); Tel.: +82-2-2030-7839 (K-J.J.); +82-2-2030-7812 (Y.M.Y.)
                [†]

                These authors contribute equally to this paper.

                Article
                cancers-12-00727
                10.3390/cancers12030727
                7140102
                32204508
                36dd9d80-2e2e-499c-9b32-e8ace8fdefe1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 March 2020
                : 16 March 2020
                Categories
                Article

                natural bioactive compound,gallic acid,egfr signaling,p53,pd-l1,immunotherapy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content290

                Cited by32

                Most referenced authors2,476