4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Arid Coastal Wetlands of Northern Chile: Towards an Integrated Management of Highly Threatened Systems

      , , ,
      Journal of Marine Science and Engineering
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ecological value of coastal wetlands is globally recognized, particularly as biodiversity hotspots, but also as buffer areas because of their role in the fight against climate change in recent years. Most of Chile’s coastal wetlands are concentrated in the central and southern part of the country due to climate conditions. However, northern coastal wetlands go unnoticed despite being located in areas of high water deficit (desert areas) and their role in bird migratory routes along the north–south coastal cordon of South America. This study reviews the current environmental status of the arid coastal wetlands of northern Chile (Lluta, Camarones, Loa, La Chimba, Copiapó, Totoral, Carrizal Bajo) in terms of regulations, management, and future aims. The main natural and anthropogenic threats to these coastal wetlands are identified, as well as the main management tools applied for their protection, e.g., the Nature Sanctuary designation, which allows for the protection of both privately and publicly owned property; and the Urban Wetland, a recently created protection category.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          The biodiversity challenge: Expanded hot-spots analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Major Earthquakes of Chile: A Historical Survey, 1535-1960

            C. Lomnitz (2004)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

              On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Marine Science and Engineering
                JMSE
                MDPI AG
                2077-1312
                September 2021
                August 31 2021
                : 9
                : 9
                : 948
                Article
                10.3390/jmse9090948
                36d80802-151b-4f36-82a8-4c9f2872f85b
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article