45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Osteomyelitis.

          Bone and joint infections are painful for patients and frustrating for both them and their doctors. The high success rates of antimicrobial therapy in most infectious diseases have not yet been achieved in bone and joint infections owing to the physiological and anatomical characteristics of bone. The key to successful management is early diagnosis, including bone sampling for microbiological and pathological examination to allow targeted and long-lasting antimicrobial therapy. The various types of osteomyelitis require differing medical and surgical therapeutic strategies. These types include, in order of decreasing frequency: osteomyelitis secondary to a contiguous focus of infection (after trauma, surgery, or insertion of a joint prosthesis); that secondary to vascular insufficiency (in diabetic foot infections); or that of haematogenous origin. Chronic osteomyelitis is associated with avascular necrosis of bone and formation of sequestrum (dead bone), and surgical debridement is necessary for cure in addition to antibiotic therapy. By contrast, acute osteomyelitis can respond to antibiotics alone. Generally, a multidisciplinary approach is required for success, involving expertise in orthopaedic surgery, infectious diseases, and plastic surgery, as well as vascular surgery, particularly for complex cases with soft-tissue loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.

            Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophil function in inflammation and inflammatory diseases.

              In inflammatory conditions such as RA, the neutrophil has tended to be dismissed as a short-lived, terminally differentiated, irrelevant bystander cell. However, this is clearly not the case. A better understanding of the complex heterogeneous pathways and processes that constitute RA, in parallel with a more sophisticated knowledge of neutrophil biology has identified many potential roles for these cells in the persistence of inflammation and progression of joint damage, which should not be underestimated. Not only are neutrophils found in high numbers within the rheumatoid joint, both in synovial tissue and in joint fluid, they have a huge potential to directly inflict damage to tissue, bone and cartilage via the secretion of proteases and toxic oxygen metabolites, as well as driving inflammation through antigen presentation and secretion of cytokines, chemokines, prostaglandins and leucotrienes. Drugs already used to treat RA down-regulate many neutrophil functions, including migration to the joint, degranulation and production of inflammatory mediators, and these cells should be considered as important targets for the development of new therapies in the future.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                Dis Model Mech
                dmm
                DMM
                Disease Models & Mechanisms
                The Company of Biologists Limited
                1754-8403
                1754-8411
                July 2014
                : 7
                : 7
                : 871-882
                Affiliations
                [1 ]Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
                [2 ]CNRS; UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
                [3 ]Macrophages et Développement de l’Immunité, Institut Pasteur, Paris F-75015, France.
                [4 ]CNRS URA2578, Paris F-75015, France.
                Author notes
                [*]

                These authors contributed equally to this work

                Article
                0070871
                10.1242/dmm.014498
                4073276
                24973754
                36a97e75-e554-461f-ba1b-9120a2eb57d6
                © 2014. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 11 October 2013
                : 01 April 2014
                Categories
                Research Article
                Custom metadata
                TIB

                Molecular medicine
                zebrafish,neutrophils,inflammation,interleukin-1β
                Molecular medicine
                zebrafish, neutrophils, inflammation, interleukin-1β

                Comments

                Comment on this article