Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synchronous intracellular delivery of EGFR-targeted antibody–drug conjugates by p38-mediated non-canonical endocytosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), including cetuximab and panitumumab, have been used in clinic settings to treat cancer. They have also recently been applied to antibody–drug conjugates (ADCs); however, their clinical efficacy is limited by several issues, including lower internalization efficiency. The binding of cetuximab to the extracellular domain of EGFR suppresses ligand-induced events; therefore, we focus on ligand-independent non-canonical EGFR endocytosis for the delivery of ADCs into cells. Tumor necrosis factor-α (TNF-α) strongly induces the endocytosis of the cetuximab-EGFR complex within 15 min via the p38 phosphorylation of EGFR in a tyrosine kinase-independent manner. A secondary antibody conjugated with saporin, a ribosome-inactivating protein, also undergoes internalization with the complex and enhances its anti-proliferative activity. Anti-cancer agents, including cisplatin and temozolomide, also induce the p38-mediated internalization. The results of the present study demonstrate that synchronous non-canonical EGFR endocytosis may be a feasible strategy for promoting the therapeutic efficacy of EGFR-targeting ADCs in clinical settings.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Genome engineering using the CRISPR-Cas9 system.

          Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Emerging functions of the EGFR in cancer

            The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as ‘noncanonical’) functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand‐induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress‐induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.

              Mutations of the epidermal growth factor receptor (EGFR) gene have been identified in specimens from patients with non-small-cell lung cancer who have a response to anilinoquinazoline EGFR inhibitors. Despite the dramatic responses to such inhibitors, most patients ultimately have a relapse. The mechanism of the drug resistance is unknown. Here we report the case of a patient with EGFR-mutant, gefitinib-responsive, advanced non-small-cell lung cancer who had a relapse after two years of complete remission during treatment with gefitinib. The DNA sequence of the EGFR gene in his tumor biopsy specimen at relapse revealed the presence of a second point mutation, resulting in threonine-to-methionine amino acid change at position 790 of EGFR. Structural modeling and biochemical studies showed that this second mutation led to gefitinib resistance. Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                hsakurai@pha.u-toyama.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 July 2022
                7 July 2022
                2022
                : 12
                : 11561
                Affiliations
                GRID grid.267346.2, ISNI 0000 0001 2171 836X, Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, , University of Toyama, ; 2630 Sugitani, Toyama, 930-0194 Japan
                Article
                15838
                10.1038/s41598-022-15838-8
                9262980
                35798841
                36919809-3470-4497-9519-038f0953c76d
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 February 2022
                : 30 June 2022
                Funding
                Funded by: JST SPRING
                Award ID: JPMJSP2145
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 19K23795
                Award ID: 19H03368
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100013236, MSD Life Science Foundation, Public Interest Incorporated Foundation;
                Funded by: FundRef http://dx.doi.org/10.13039/100007449, Takeda Science Foundation;
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                biological techniques,cancer,cell biology,drug discovery
                Uncategorized
                biological techniques, cancer, cell biology, drug discovery

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content73

                Cited by1

                Most referenced authors876