3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy

          Summary: SPARKY (Goddard and Kneller, SPARKY 3) remains the most popular software program for NMR data analysis, despite the fact that development of the package by its originators ceased in 2001. We have taken over the development of this package and describe NMRFAM-SPARKY, which implements new functions reflecting advances in the biomolecular NMR field. NMRFAM-SPARKY has been repackaged with current versions of Python and Tcl/Tk, which support new tools for NMR peak simulation and graphical assignment determination. These tools, along with chemical shift predictions from the PACSY database, greatly accelerate protein side chain assignments. NMRFAM-SPARKY supports automated data format interconversion for interfacing with a variety of web servers including, PECAN , PINE, TALOS-N, CS-Rosetta, SHIFTX2 and PONDEROSA-C/S. Availability and implementation: The software package, along with binary and source codes, if desired, can be downloaded freely from http://pine.nmrfam.wisc.edu/download_packages.html. Instruction manuals and video tutorials can be found at http://www.nmrfam.wisc.edu/nmrfam-sparky-distribution.htm. Contact: whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Principles that Govern the Folding of Protein Chains

            C ANFINSEN (1973)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of coupled folding and binding of an intrinsically disordered protein.

              Protein folding and binding are analogous processes, in which the protein 'searches' for favourable intramolecular or intermolecular interactions on a funnelled energy landscape. Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. The mechanism by which folding is coupled to binding is poorly understood, but it has been hypothesized on theoretical grounds that the binding kinetics may be enhanced by a 'fly-casting' effect, where the disordered protein binds weakly and non-specifically to its target and folds as it approaches the cognate binding site. Here we show, using NMR titrations and (15)N relaxation dispersion, that the phosphorylated kinase inducible activation domain (pKID) of the transcription factor CREB forms an ensemble of transient encounter complexes on binding to the KIX domain of the CREB binding protein. The encounter complexes are stabilized primarily by non-specific hydrophobic contacts, and evolve by way of an intermediate to the fully bound state without dissociation from KIX. The carboxy-terminal helix of pKID is only partially folded in the intermediate, and becomes stabilized by intermolecular interactions formed in the final bound state. Future applications of our method will provide new understanding of the molecular mechanisms by which intrinsically disordered proteins perform their diverse biological functions.
                Bookmark

                Author and article information

                Journal
                Nature Biomedical Engineering
                Nat Biomed Eng
                Springer Nature
                2157-846X
                March 2019
                February 11 2019
                March 2019
                : 3
                : 3
                : 206-219
                Article
                10.1038/s41551-019-0349-8
                30948810
                3641222a-22bc-4da3-8d14-bd8cddd5deda
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article