14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Subglacial hydrological connectivity within the Byrd Glacier catchment, East Antarctica

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ice, Cloud and land Elevation Satellite (ICESat) repeat-track laser altimetry has identified 17 sites within the Byrd Glacier catchment, East Antarctica, where rapid ice-surface height changes have occurred, which have been interpreted as evidence for ‘active’ subglacial lakes. Here we present evidence from a new radio-echo sounding (RES) survey at 11 of these locations to understand the bed conditions associated with the proposed hydrological activity. At none of the sites examined did we find evidence in support of substantial pooled basal water. In the majority of cases, along-track RES bed reflection amplitudes either side of the locations of surface height change are indistinguishable from those within the features. These results indicate that, in most cases, hypothesized ‘active’ lakes are not discrete radar targets and are therefore much smaller than the areas of surface height change. In addition, we have identified three new relatively large subglacial lakes upstream of the region where most ‘active’ subglacial lakes are found, in an area where the hydraulic gradient is significantly lower. Our results suggest that substantial and long-lasting basal water storage in the Byrd Glacier catchment occurs only under low hydraulic gradients, while coast-proximal sites of hydraulic activity likely involve small or temporary accumulations of basal water.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          BEDMAP: A new ice thickness and subglacial topographic model of Antarctica

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Movement of Water in Glaciers

            R. Shreve (1972)
            A network of passages situated along three-grain intersections enables water to percolate through temperate glacier ice. The deformability of the ice allows the passages to expand and contract in response to changes in pressure, and melting of the passage walls by heat generated by viscous dissipation and carried by above-freezing water causes the larger passages gradually to increase in size at the expense of the smaller ones. Thus, the behavior of the passages is primarily the result of three basic characteristics: (1) the capacity of the system continually adjusts, though not instantly, to fluctuations in the supply of melt water; (2) the direction of movement of the water is determined mainly by the ambient pressure in the ice, which in turn is governed primarily by the slope of the ice surface and secondarily by the local topography of the glacier bed; and, most important, (3) the network of passages tends in time to become arborescent, with a superglacial part much like an ordinary river system in a karst region, an englacial part comprised of tree-like systems of passages penetrating the ice from bed to surface, and a subglacial part consisting of tunnels in the ice carrying water and sediment along the glacier bed. These characteristics indicate that a sheet-like basal water layer under a glacier would normally be unstable, the stable form being tunnels; and they explain, among other things, why ice-marginal melt-water streams and lakes are so common, why eskers, which are generally considered to have formed in subglacial passages, trend in the general direction of ice flow with a tendency to follow valley floors and to cross divides at their lowest points, why they are typically discontinuous where they cross ridge crests, why they sometimes contain fragments from bedrock outcrops near the esker but not actually crossed by it, and why they seem to be formed mostly during the later stages of glaciation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008)

                Bookmark

                Author and article information

                Journal
                applab
                Journal of Glaciology
                J. Glaciol.
                Cambridge University Press (CUP)
                0022-1430
                1727-5652
                2014
                July 10 2017
                2014
                : 60
                : 220
                : 345-352
                Article
                10.3189/2014JoG13J014
                361d2d5b-4ce1-432e-9cdd-4d3941490c0f
                © 2014
                History

                Comments

                Comment on this article