11
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      To submit to this journal, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stay or go? Geographic variation in risks due to climate change for fishing fleets that adapt in-place or adapt on-the-move

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From fishers to farmers, people across the planet who rely directly upon natural resources for their livelihoods and well-being face extensive impacts from climate change. However, local- and regional-scale impacts and associated risks can vary geographically, and the implications for development of adaptation pathways that will be most effective for specific communities are underexplored. To improve this understanding at relevant local scales, we developed a coupled social-ecological approach to assess the risk posed to fishing fleets by climate change, applying it to a case study of groundfish fleets that are a cornerstone of fisheries along the U.S. West Coast. Based on the mean of three high-resolution climate projections, we found that more poleward fleets may experience twice as much local temperature change as equatorward fleets, and 3–4 times as much depth displacement of historical environmental conditions in their fishing grounds. Not only are they more highly exposed to climate change, but some poleward fleets are >10x more economically-dependent on groundfish. While we show clear regional differences in fleets’ flexibility to shift to new fisheries via fisheries diversification (‘adapt in-place’) or shift their fishing grounds in response to future change through greater mobility (‘adapt on-the-move’), these differences do not completely mitigate the greater exposure and economic dependence of more poleward fleets. Therefore, on the U.S. West Coast more poleward fishing fleets may be at greater overall risk due to climate change, in contrast to expectations for greater equatorward risk in other parts of the world. Through integration of climatic, ecological, and socio-economic data, this case study illustrates the potential for widespread implementation of risk assessment at scales relevant to fishers, communities, and decision makers. Such applications will help identify the greatest opportunities to mitigate climate risks through pathways that enhance flexibility and other dimensions of adaptive capacity.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: not found
          • Article: not found

          Simple Features for R: Standardized Support for Spatial Vector Data

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Social Network Analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PLOS Climate
                PLOS Clim
                Public Library of Science (PLoS)
                2767-3200
                February 9 2024
                February 9 2024
                : 3
                : 2
                : e0000285
                Article
                10.1371/journal.pclm.0000285
                3612f292-827d-4ec2-b42a-f1ee572b0fc6
                © 2024

                https://creativecommons.org/publicdomain/zero/1.0/

                History

                Comments

                Comment on this article