Spatial interaction between tumor-infiltrating lymphocytes (TILs) and tumor cells is valuable in predicting the effectiveness of immune response and prognosis amongst patients with lung adenocarcinoma (LUAD). Recent evidence suggests that the spatial distance between tumor cells and lymphocytes also influences the immune responses, but the distance analysis based on Hematoxylin and Eosin (H&E) -stained whole-slide images (WSIs) remains insufficient. To address this issue, we aim to explore the relationship between distance and prognosis prediction of patients with LUAD in this study.
We recruited patients with resectable LUAD from three independent cohorts in this multi-center study. We proposed a simple but effective deep learning-driven workflow to automatically segment different cell types in the tumor region using the HoVer-Net model, and quantified the spatial distance (DIST) between tumor cells and lymphocytes based on H&E-stained WSIs. The association of DIST with disease-free survival (DFS) was explored in the discovery set (D1, n = 276) and the two validation sets (V1, n = 139; V2, n = 115).
In multivariable analysis, the low DIST group was associated with significantly better DFS in the discovery set (D1, HR, 0.61; 95 % CI, 0.40–0.94; p = 0.027) and the two validation sets (V1, HR, 0.54; 95 % CI, 0.32–0.91; p = 0.022; V2, HR, 0.44; 95 % CI, 0.24–0.81; p = 0.009). By integrating the DIST with clinicopathological factors, the integrated model (full model) had better discrimination for DFS in the discovery set (C-index, D1, 0.745 vs. 0.723) and the two validation sets (V1, 0.621 vs. 0.596; V2, 0.671 vs. 0.650). Furthermore, the computerized DIST was associated with immune phenotypes such as immune-desert and inflamed phenotypes.