5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exploring the potential of xylooligosaccharides as prebiotics: insights from CAZymes families and their emerging health benefits

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.

          Because the human gut microbiota can play a major role in host health, there is currently some interest in the manipulation of the composition of the gut flora towards a potentially more remedial community. Attempts have been made to increase bacterial groups such as Bifidobacterium and Lactobacillus that are perceived as exerting health-promoting properties. Probiotics, defined as microbial food supplements that beneficially affect the host by improving its intestinal microbial balance, have been used to change the composition of colonic microbiota. However, such changes may be transient, and the implantation of exogenous bacteria therefore becomes limited. In contrast, prebiotics are nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacterial species already resident in the colon, and thus attempt to improve host health. Intake of prebiotics can significantly modulate the colonic microbiota by increasing the number of specific bacteria and thus changing the composition of the microbiota. Nondigestible oligosaccharides in general, and fructooligosaccharides in particular, are prebiotics. They have been shown to stimulate the growth of endogenous bifidobacteria, which, after a short feeding period, become predominant in human feces. Moreover, these prebiotics modulate lipid metabolism, most likely via fermentation products. By combining the rationale of pro- and prebiotics, the concept of synbiotics is proposed to characterize some colonic foods with interesting nutritional properties that make these compounds candidates for classification as health-enhancing functional food ingredients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary modulation of the human colonic microbiota: updating the concept of prebiotics.

            Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The carbohydrate-active enzyme database: functions and literature

              Thirty years have elapsed since the emergence of the classification of carbohydrate-active enzymes in sequence-based families that became the CAZy database over 20 years ago, freely available for browsing and download at  www.cazy.org . In the era of large scale sequencing and high-throughput Biology, it is important to examine the position of this specialist database that is deeply rooted in human curation. The three primary tasks of the CAZy curators are (i) to maintain and update the family classification of this class of enzymes, (ii) to classify sequences newly released by GenBank and the Protein Data Bank and (iii) to capture and present functional information for each family. The CAZy website is updated once a month. Here we briefly summarize the increase in novel families and the annotations conducted during the last 8 years. We present several important changes that facilitate taxonomic navigation, and allow to download the entirety of the annotations. Most importantly we highlight the considerable amount of work that accompanies the analysis and report of biochemical data from the literature.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Biologia
                Biologia
                Springer Science and Business Media LLC
                1336-9563
                July 2023
                May 31 2023
                : 78
                : 7
                : 1789-1806
                Article
                10.1007/s11756-023-01440-4
                35ce8fa1-ed27-4c32-b12f-a96a56e7c265
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article