8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Poleward Transport of TPX2 in the Mammalian Mitotic Spindle Requires Dynein, Eg5, and Microtubule Flux

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TPX2 is a spindle assembly factor that is required for MT assembly near chromosomes. Using photoactivation of fluorescence, we report that TPX2 is transported poleward in the half-spindle. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5, and to suppression of MT flux.

          Abstract

          TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic instability of microtubule growth.

          We report here that microtubules in vitro coexist in growing and shrinking populations which interconvert rather infrequently. This dynamic instability is a general property of microtubules and may be fundamental in explaining cellular microtubule organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.

            Small molecules that perturb specific protein functions are valuable tools for dissecting complex processes in mammalian cells. A combination of two phenotype-based screens, one based on a specific posttranslational modification, the other visualizing microtubules and chromatin, was used to identify compounds that affect mitosis. One compound, here named monastrol, arrested mammalian cells in mitosis with monopolar spindles. In vitro, monastrol specifically inhibited the motility of the mitotic kinesin Eg5, a motor protein required for spindle bipolarity. All previously known small molecules that specifically affect the mitotic machinery target tubulin. Monastrol will therefore be a particularly useful tool for studying mitotic mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts.

              Functional nuclei and mitotic spindles are shown to assemble around DNA-coated beads incubated in Xenopus egg extracts. Bipolar spindles assemble in the absence of centrosomes and kinetochores, indicating that bipolarity is an intrinsic property of microtubules assembling around chromatin in a mitotic cytoplasm. Microtubules nucleated at dispersed sites with random polarity rearrange into two arrays of uniform polarity. Spindle-pole formation requires cytoplasmic dynein-dependent translocation of microtubules across one another. It is proposed that spindles form in the absence of centrosomes by motor-dependent sorting of microtubules according to their polarity.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                mbc
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 March 2010
                : 21
                : 6
                : 979-988
                Affiliations
                [1]*University of Massachusetts, Amherst, MA 01003;
                [2] Duke University, Durham NC 27708; and
                [3] University of Toronto, Toronto, Ontario M5S 1A8, Canada
                Author notes
                Address correspondence to: Patricia Wadsworth ( patw@ 123456bio.umass.edu ).
                Article
                3572398
                10.1091/mbc.E09-07-0601
                2836978
                20110350
                35c16386-b7ba-4727-8750-06853cc2ef2f
                © 2010 by The American Society for Cell Biology
                History
                : 24 July 2009
                : 29 December 2009
                : 15 January 2010
                Categories
                Articles
                Cytoskeleton

                Molecular biology
                Molecular biology

                Comments

                Comment on this article