128
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (∼30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.

          Author Summary

          DNA methylation is defined as an epigenetic modification because it can be inherited across cell division. Since variations in DNA methylation can affect gene expression and be inherited across generations, they can provide a source of heritable phenotypic variation that is not caused by changes in the DNA sequence. However, the extent to which this type of phenotypic variation occurs in natural or experimental populations is unknown, partly because of the difficulty in teasing apart the effect of DNA methylation variants (epialleles) from that of the DNA sequence variants also present in these populations. To overcome this problem, we have derived a population of epigenetic recombinant inbred lines in the plant Arabidopsis thaliana, using parents with few DNA sequence differences but contrasting DNA methylation profiles. This population showed variation and a high degree of heritability for two complex traits, flowering time and plant height. Multiple parental DNA methylation differences were also found to be stably inherited over eight generations in this population. These findings reveal the potential impact of heritable DNA methylation variation on complex traits and demonstrate the importance of integrating epigenetic information in population genetics studies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening.

            A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein-like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyploidy and genome evolution in plants.

              Genome doubling (polyploidy) has been and continues to be a pervasive force in plant evolution. Modern plant genomes harbor evidence of multiple rounds of past polyploidization events, often followed by massive silencing and elimination of duplicated genes. Recent studies have refined our inferences of the number and timing of polyploidy events and the impact of these events on genome structure. Many polyploids experience extensive and rapid genomic alterations, some arising with the onset of polyploidy. Survivorship of duplicated genes are differential across gene classes, with some duplicate genes more prone to retention than others. Recent theory is now supported by evidence showing that genes that are retained in duplicate typically diversify in function or undergo subfunctionalization. Polyploidy has extensive effects on gene expression, with gene silencing accompanying polyploid formation and continuing over evolutionary time.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2009
                June 2009
                26 June 2009
                : 5
                : 6
                : e1000530
                Affiliations
                [1 ]Unité de Recherche en Génomique Végétale, Centre National de la Recherche Scientifique (CNRS) UMR 8114, Institut National de la Recherche Agronomique (INRA) UMR 1165, Université d'Evry Val d'Essonne, Evry, France
                [2 ]Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR 254, INRA, Versailles, France
                [3 ]Laboratoire de Physique Théorique et Modèles Statistiques, CNRS UMR 8626, Université Paris-Sud, Orsay, France
                [4 ]Groningen Bioinformatics Centre, University of Groningen, Haren, The Netherlands
                [5 ]Ferme du Moulon, Université Paris-Sud, INRA, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France
                [6 ]CNRS UMR 8186, Département de Biologie, Ecole Normale Supérieure, Paris, France
                [7 ]INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
                Queensland Institute of Medical Research, Australia
                Author notes
                [¤a]

                Current address: Laboratoire Conservation des Espèces, Restauration et Suivi des Populations, CNRS UMR 7204, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Paris, France

                [¤b]

                Current address: Génomique des microorganismes, Université Pierre et Marie Curie, CNRS FRE3214, Paris, France

                [¤c]

                Current address: Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France

                Conceived and designed the experiments: D. Bouchez C. Dillmann P. Guerche F. Hospital V. Colot. Performed the experiments: E. Porcher F. K. Teixeira V. Saliba-Colombani M. Simon N. Agier A. Bulski J. Albuisson F. Heredia P. Audigier V. Colot. Analyzed the data: F. Johannes E. Porcher F. K. Teixeira J. Albuisson F. Heredia F. Hospital V. Colot. Wrote the paper: F. Johannes E. Porcher F. Hospital V. Colot.

                Article
                09-PLGE-RA-0632R2
                10.1371/journal.pgen.1000530
                2696037
                19557164
                35a4cced-27a9-45e3-9440-e85561d1f84f
                Johannes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 April 2009
                : 22 May 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Evolutionary Biology/Genomics
                Genetics and Genomics
                Genetics and Genomics/Complex Traits
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Genomics
                Genetics and Genomics/Plant Genetics and Gene Expression
                Genetics and Genomics/Population Genetics
                Molecular Biology
                Molecular Biology/DNA Methylation
                Plant Biology
                Plant Biology/Agricultural Biotechnology
                Plant Biology/Plant Genetics and Gene Expression

                Genetics
                Genetics

                Comments

                Comment on this article