6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      METTL14 Facilitates the Metastasis of Pancreatic Carcinoma by Stabilizing LINC00941 in an m6A-IGF2BP2-Dependent Manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic adenocarcinoma (PC), one of the most fatal diseases, usually generates a poor prognosis in advanced stages. N6-methyladenosine modification has emerged as a crucial participant in tumor development and recurrence. Methyltransferase-like 14 (METTL14), as a core member of methyltransferases, is involved in tumor progression and metastasis. However, the potential mechanism by which METTL14 regulates long noncoding RNAs (lncRNAs) in PC remains unclear. RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation quantitative PCR (MeRIP-qPCR), and fluorescence in situ hybridization (FISH) were used to explore the underlying mechanisms. In our study, we found that METTL14 expression was upregulated in PC patients, and was associated with poor prognosis. In vitro and in vivo experiments, knocking down METTL14 suppressed tumor metastasis. RNA-seq and bioinformatics analyses were used to identify LINC00941 as the downstream target of METTL14. Mechanistically, LINC00941 was upregulated by METTL14 in an m6A-dependent way. LINC00941 was recruited and recognized by IGF2BP2. METTL14 enhanced the affinity of IGF2BP2 for LINC00941, while IGF2BP2 promoted the stabilization of LINC00941, which contributed to the migration and invasion of PC cells. Overall, our research revealed that METTL14 promoted the metastasis of PC through m6A modification of LINC00941. Targeting the METTL14-LINC00941-IGF2BP2 axis may provide promising therapeutic approaches for PC.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2022

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

            Although microRNAs (miRNAs), other non-coding RNAs (ncRNAs) (e.g. lncRNAs, pseudogenes and circRNAs) and competing endogenous RNAs (ceRNAs) have been implicated in cell-fate determination and in various human diseases, surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs. In this study, we developed starBase v2.0 (http://starbase.sysu.edu.cn/) to systematically identify the RNA–RNA and protein–RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By analyzing millions of RNA-binding protein binding sites, we identified ∼9000 miRNA-circRNA, 16 000 miRNA-pseudogene and 285 000 protein–RNA regulatory relationships. Moreover, starBase v2.0 has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date. We identified ∼10 000 ceRNA pairs from CLIP-supported miRNA target sites. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. Finally, we developed interactive web implementations to provide visualization, analysis and downloading of the aforementioned large-scale data sets. This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recognition of RNA N 6 -methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation

              N 6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTHDF2, IGF2BPs promote the stability and storage of their target mRNAs (e.g., MYC) in an m6A-depedent manner under normal and stress conditions and thus affect gene expression output. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Our work therefore reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2023
                17 April 2023
                : 14
                : 7
                : 1117-1131
                Affiliations
                Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
                Author notes
                ✉ Corresponding author: Baiwen Li, MD, Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China. E-mail: muzibowen@ 123456126.com

                †These authors contributed equally to this work and share first authorship.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav14p1117
                10.7150/jca.84070
                10197944
                37215454
                35a0e86a-6ae6-4ff2-be8e-e96b290e71ff
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 6 March 2023
                : 8 April 2023
                Categories
                Research Paper

                Oncology & Radiotherapy
                pancreatic carcinoma,mettl14,metastasis,linc00941,igf2bp2,n6-methyladenosine
                Oncology & Radiotherapy
                pancreatic carcinoma, mettl14, metastasis, linc00941, igf2bp2, n6-methyladenosine

                Comments

                Comment on this article