22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tranexamic acid is associated with selective increase in inflammatory markers following total knee arthroplasty (TKA): a pilot study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tranexamic acid (TXA) is commonly used in orthopedic surgery to reduce excessive bleeding and transfusion requirements. Our aim was to examine if TXA was required in all osteoarthritis patients undergoing TKA surgery, and its possible effects on systemic inflammation and coagulation properties.

          Methods

          Twenty-three patients (Oxford Score 22–29) were recruited consecutively; 12 patients received TXA before (IV, 1.2 g/90 kg) and immediately after surgery (intra-articular, 1.4 g/90 kg). Inflammatory mediators and ROTEM parameters were measured in blood at baseline, after the first bone-cut, immediately after surgery, and postoperative days 1 and 2.

          Results

          After the bone cut and surgery, TXA significantly increased MCP-1, TNF-α, IL-1β and IL-6 levels compared to non-TXA patients, which was further amplified postoperatively. During surgery, TXA significantly prolonged EXTEM clot times, indicating a thrombin-slowing effect, despite little or no change in clot amplitude or fibrinogen. TXA was associated with three- to fivefold increases in FIBTEM maximum lysis (ML), a finding counter to TXA’s antifibrinolytic effect. Maximum lysis for extrinsic and intrinsic pathways was < 8%, indicating little or no hyperfibrinolysis. No significant differences were found in postoperative hemoglobin between the two groups.

          Conclusions

          TXA was associated with increased systemic inflammation during surgery compared to non-TXA patients, with further amplification on postoperative days 1 and 2. On the basis of little or no change in viscoelastic clot strength, fibrinogen or clot lysis, there appeared to be no clinical justification for TXA in our group of patients. Larger prospective, randomized trials are required to investigate a possible proinflammatory effect in TKA patients.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The role of cytokines in osteoarthritis pathophysiology.

          Morphological changes observed in OA include cartilage erosion as well as a variable degree of synovial inflammation. Current research attributes these changes to a complex network of biochemical factors, including proteolytic enzymes, that lead to a breakdown of the cartilage macromolecules. Cytokines such as IL-1 and TNF-alpha produced by activated synoviocytes, mononuclear cells or by articular cartilage itself significantly up-regulate metalloproteinases (MMP) gene expression. Cytokines also blunt chondrocyte compensatory synthesis pathways required to restore the integrity of the degraded extrecellular matrix (ECM). Moreover, in OA synovium, a relative deficit in the production of natural antagonists of the IL-1 receptor (IL-1Ra) has been demonstrated, and could possibly be related to an excess production of nitric oxide in OA tissues. This, coupled with an upregulation in the receptor level, has been shown to be an additional enhancer of the catabolic effect of IL-1 in this disease.IL-1 and TNF-alpha significantly up-regulate MMP-3 steady-state mRNA derived from human synovium and chondrocytes. The neutralization of IL-1 and/or TNF-alpha up-regulation of MMP gene expression appears to be a logical development in the potential medical therapy of OA. Indeed, recombinant IL-1receptor antagonists (ILRa) and soluble IL-1 receptor proteins have been tested in both animal models of OA for modification of OA progression. Soluble IL-1Ra suppressed MMP-3 transcription in the rabbit synovial cell line HIG-82. Experimental evidence showing that neutralizing TNF-alpha suppressed cartilage degradation in arthritis also support such strategy. The important role of TNF-alpha in OA may emerge from the fact that human articular chondrocytes from OA cartilage expressed a significantly higher number of the p55 TNF-alpha receptor which could make OA cartilage particularly susceptible to TNF-alpha degradative stimuli. In addition, OA cartilage produces more TNF-alpha and TNF anglealpha convertase enzyme (TACE) mRNA than normal cartilage. By analogy, an inhibitor to the p55 TNF-alpha receptor may also provide a mechanism for abolishing TNF-alpha-induced degradation of cartilage ECM by MMPs. Since TACE is the regulator of TNF-alpha activity, limiting the activity of TACE might also prove efficacious in OA. IL-1 and TNF-alpha inhibition of chondrocyte compensatory biosynthesis pathways which further compromise cartilage repair must also be dealt with, perhaps by employing stimulatory agents such as transforming growth factor-beta or insulin-like growth factor-I. Certain cytokines have antiinflammatory properties. Three such cytokines - IL-4, IL-10, and IL-13 - have been identified as able to modulate various inflammatory processes. Their antiinflammatory potential, however, appears to depend greatly on the target cell. Interleukin-4 (IL-4) has been tested in vitro in OA tissue and has been shown to suppress the synthesis of both TNF-alpha and IL-1beta in the same manner as low-dose dexamethasone. Naturally occurring antiinflammatory cytokines such as IL-10 inhibit the synthesis of IL-1 and TNF-alpha and can be potential targets for therapy in OA. Augmenting inhibitor production in situ by gene therapy or supplementing it by injecting the recombinant protein is an attractive therapeutic target, although an in vivo assay in OA is not available, and its applicability has yet to be proven. Similarly, IL-13 significantly inhibits lipopolysaccharide (LPS)-induced TNF-alpha production by mononuclear cells from peripheral blood, but not in cells from inflamed synovial fluid. IL-13 has important biological activities: inhibition of the production of a wide range of proinflammatory cytokines in monocytes/macrophages, B cells, natural killer cells and endothelial cells, while increasing IL-1Ra production. In OA synovial membranes treated with LPS, IL-13 inhibited the synthesis of IL-1beta, TNF-alpha and stromelysin, while increasing IL-1Ra production.In summary, modulation of cytokines that control MMP gene up-regulation would appear to be fertile targets for drug development in the treatment of OA. Several studies illustrate the potential importance of modulating IL-1 activity as a means to reduce the progression of the structural changes in OA. In the experimental dog and rabbit models of OA, we have demonstrated that in vivo intraarticular injections of the IL-Ra gene can prevent the progression of structural changes in OA. Future directions in the research and treatment of osteoarthritis (OA) will be based on the emerging picture of pathophysiological events that modulate the initiation and progression of OA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tranexamic acid: a review of its use in surgery and other indications.

            K Goa, C J Dunn (1999)
            Tranexamic acid is a synthetic derivative of the amino acid lysine that exerts its antifibrinolytic effect through the reversible blockade of lysine binding sites on plasminogen molecules. Intravenously administered tranexamic acid (most commonly 10 mg/kg followed by infusion of 1 mg/kg/hour) caused reductions relative to placebo of 29 to 54% in postoperative blood losses in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB), with statistically significant reductions in transfusion requirements in some studies. Tranexamic acid had similar efficacy to aprotinin 2 x 10(6) kallikrein inhibitory units (KIU) and was superior to dipyridamole in the reduction of postoperative blood losses. Transfusion requirements were reduced significantly by 43% with tranexamic acid and by 60% with aprotinin in 1 study. Meta-analysis of 60 trials showed tranexamic acid and aprotinin, unlike epsilon-aminocaproic acid (EACA) and desmopressin, to reduce significantly the number of patients requiring allogeneic blood transfusions after cardiac surgery with CPB. Tranexamic acid was associated with reductions relative to placebo in mortality of 5 to 54% in patients with upper gastrointestinal bleeding. Meta-analysis indicated a reduction of 40%. Reductions of 34 to 57.9% versus placebo or control in mean menstrual blood loss occurred during tranexamic acid therapy in women with menorrhagia; the drug has also been used to good effect in placental bleeding, postpartum haemorrhage and conisation of the cervix. Tranexamic acid significantly reduced mean blood losses after oral surgery in patients with haemophilia and was effective as a mouthwash in dental patients receiving oral anticoagulants. Reductions in blood loss were also obtained with the use of the drug in patients undergoing orthotopic liver transplantation or transurethral prostatic surgery, and rates of rebleeding were reduced in patients with traumatic hyphaema. Clinical benefit has also been reported with tranexamic acid in patients with hereditary angioneurotic oedema. Tranexamic acid is well tolerated; nausea and diarrhoea are the most common adverse events. Increased risk of thrombosis with the drug has not been demonstrated in clinical trials. Tranexamic acid is useful in a wide range of haemorrhagic conditions. The drug reduces postoperative blood losses and transfusion requirements in a number of types of surgery, with potential cost and tolerability advantages over aprotinin, and appears to reduce rates of mortality and urgent surgery in patients with upper gastrointestinal haemorrhage. Tranexamic acid reduces menstrual blood loss and is a possible alternative to surgery in menorrhagia, and has been used successfully to control bleeding in pregnancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peripheral blood fibrocytes: differentiation pathway and migration to wound sites.

              Fibrocytes are a distinct population of blood-borne cells that display a unique cell surface phenotype (collagen I+/CD11b+/CD13+/CD34+/CD45RO+/MHC class II+/CD86+) and exhibit potent immunostimulatory activities. Circulating fibrocytes rapidly enter sites of tissue injury, suggesting an important role for these cells in wound repair. However, the regulatory processes that govern the differentiation of blood-borne fibrocytes and the mechanisms that underlie the migration of these cells to wound sites are currently not known. We report herein that ex vivo cultured fibrocytes can differentiate from a CD14+-enriched mononuclear cell population and that this process requires contact with T cells. Furthermore, we demonstrate that TGF-beta1 (1-10 ng/ml), an important fibrogenic and growth-regulating cytokine involved in wound healing, increases the differentiation and functional activity of cultured fibrocytes. Because fibrocytes home to sites of tissue injury, we examined the role of chemokine/chemokine receptor interactions in fibrocyte trafficking. We show that secondary lymphoid chemokine, a ligand of the CCR7 chemokine receptor, acts as a potent stimulus for fibrocyte chemotaxis in vitro and for the homing of injected fibrocytes to sites of cutaneous tissue injury in vivo. Finally, we demonstrate that differentiated, cultured fibrocytes express alpha smooth muscle actin and contract collagen gels in vitro, two characteristic features of wound-healing myofibroblasts. These data provide important insight into the control of fibrocyte differentiation and trafficking during tissue repair and significantly expand their potential role during wound healing.
                Bookmark

                Author and article information

                Contributors
                andrea.perhavec@my.jcu.edu.au
                hayley.letson@jcu.edu.au
                jodie.morris@oriql.com.au
                peter@kneesurgeon.com.au
                koshman1@me.com
                mprwilkinson@hotmail.com
                +61 407 550 235 , geoffrey.dobson@jcu.edu.au
                Journal
                J Orthop Surg Res
                J Orthop Surg Res
                Journal of Orthopaedic Surgery and Research
                BioMed Central (London )
                1749-799X
                18 June 2018
                18 June 2018
                2018
                : 13
                : 149
                Affiliations
                [1 ]The Orthopaedic Research Institute of Queensland (ORIQL), 7 Turner St, Pimlico, Townsville, Queensland 4812 Australia
                [2 ]ISNI 0000 0004 0474 1797, GRID grid.1011.1, Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, , James Cook University, ; 1 James Cook Drive, Townsville, Queensland 4811 Australia
                Author information
                http://orcid.org/0000-0001-7905-4551
                Article
                855
                10.1186/s13018-018-0855-5
                6006687
                29914535
                3592b4f0-b8f2-4c59-b09a-d1c5ea7e16be
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 February 2018
                : 5 June 2018
                Funding
                Funded by: College of Medicine and Dentistry, James Cook University and the Mater Hospital, Townsville for internal funding that supported the study
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Surgery
                tranexamic acid,total knee arthroplasty,coagulation,inflammation,orthopaedic surgery,trauma
                Surgery
                tranexamic acid, total knee arthroplasty, coagulation, inflammation, orthopaedic surgery, trauma

                Comments

                Comment on this article