6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy

      ,
      Cancers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the tumor immune microenvironment (TIME) for effective therapy

            The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage diversity enhances tumor progression and metastasis.

              There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression. During tumor initiation, they create an inflammatory environment that is mutagenic and promotes growth. As tumors progress to malignancy, macrophages stimulate angiogenesis, enhance tumor cell migration and invasion, and suppress antitumor immunity. At metastatic sites, macrophages prepare the target tissue for arrival of tumor cells, and then a different subpopulation of macrophages promotes tumor cell extravasation, survival, and subsequent growth. Specialized subpopulations of macrophages may represent important new therapeutic targets. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                February 2024
                January 23 2024
                : 16
                : 3
                : 491
                Article
                10.3390/cancers16030491
                3590ad1b-6cb0-437c-8f2a-c463863085e3
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article