3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent evidence indicates that ionizing radiation can enhance immune responses to tumors. Advances in radiation delivery techniques allow hypofractionated delivery of conformal radiotherapy. Hypofractionation or other modifications of standard fractionation may improve radiation’s ability to promote immune responses to tumors. Other novel delivery options may also affect immune responses, including T-cell activation and tumor-antigen presentation changes. However, there is limited understanding of the immunological impact of hypofractionated and unique multifractionated radiotherapy regimens, as these observations are relatively recent. Hence, these differences in radiotherapy fractionation result in distinct immune-modulatory effects. Radiation oncologists and immunologists convened a virtual consensus discussion to identify current deficiencies, challenges, pitfalls and critical gaps when combining radiotherapy with immunotherapy and making recommendations to the field and advise National Cancer Institute on new directions and initiatives that will help further development of these two fields.

          This commentary aims to raise the awareness of this complexity so that the need to study radiation dose, fractionation, type and volume is understood and valued by the immuno-oncology research community. Divergence of approaches and findings between preclinical studies and clinical trials highlights the need for evaluating the design of future clinical studies with particular emphasis on radiation dose and fractionation, immune biomarkers and selecting appropriate end points for combination radiation/immune modulator trials, recognizing that direct effect on the tumor and potential abscopal effect may well be different. Similarly, preclinical studies should be designed as much as possible to model the intended clinical setting. This article describes a conceptual framework for testing different radiation therapy regimens as separate models of how radiation itself functions as an immunomodulatory ‘drug’ to provide alternatives to the widely adopted ‘one-size-fits-all’ strategy of frequently used 8 Gy×3 regimens immunomodulation.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer.

          Background Most patients with locally advanced, unresectable, non-small-cell lung cancer (NSCLC) have disease progression despite definitive chemoradiotherapy (chemotherapy plus concurrent radiation therapy). This phase 3 study compared the anti-programmed death ligand 1 antibody durvalumab as consolidation therapy with placebo in patients with stage III NSCLC who did not have disease progression after two or more cycles of platinum-based chemoradiotherapy. Methods We randomly assigned patients, in a 2:1 ratio, to receive durvalumab (at a dose of 10 mg per kilogram of body weight intravenously) or placebo every 2 weeks for up to 12 months. The study drug was administered 1 to 42 days after the patients had received chemoradiotherapy. The coprimary end points were progression-free survival (as assessed by means of blinded independent central review) and overall survival (unplanned for the interim analysis). Secondary end points included 12-month and 18-month progression-free survival rates, the objective response rate, the duration of response, the time to death or distant metastasis, and safety. Results Of 713 patients who underwent randomization, 709 received consolidation therapy (473 received durvalumab and 236 received placebo). The median progression-free survival from randomization was 16.8 months (95% confidence interval [CI], 13.0 to 18.1) with durvalumab versus 5.6 months (95% CI, 4.6 to 7.8) with placebo (stratified hazard ratio for disease progression or death, 0.52; 95% CI, 0.42 to 0.65; P<0.001); the 12-month progression-free survival rate was 55.9% versus 35.3%, and the 18-month progression-free survival rate was 44.2% versus 27.0%. The response rate was higher with durvalumab than with placebo (28.4% vs. 16.0%; P<0.001), and the median duration of response was longer (72.8% vs. 46.8% of the patients had an ongoing response at 18 months). The median time to death or distant metastasis was longer with durvalumab than with placebo (23.2 months vs. 14.6 months; P<0.001). Grade 3 or 4 adverse events occurred in 29.9% of the patients who received durvalumab and 26.1% of those who received placebo; the most common adverse event of grade 3 or 4 was pneumonia (4.4% and 3.8%, respectively). A total of 15.4% of patients in the durvalumab group and 9.8% of those in the placebo group discontinued the study drug because of adverse events. Conclusions Progression-free survival was significantly longer with durvalumab than with placebo. The secondary end points also favored durvalumab, and safety was similar between the groups. (Funded by AstraZeneca; PACIFIC ClinicalTrials.gov number, NCT02125461 .).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Approaches to treat immune hot, altered and cold tumours with combination immunotherapies

            Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The future of immune checkpoint therapy.

              Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances and provided a new weapon against cancer. This therapy has elicited durable clinical responses and, in a fraction of patients, long-term remissions where patients exhibit no clinical signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2021
                7 April 2021
                : 9
                : 4
                : e002038
                Affiliations
                [1 ]departmentDepartment of Radiation Oncology , Weill Cornell Medical College , New York, New York, USA
                [2 ]departmentRadiation Oncology, Pathology and Urology, and Institute of Onco-Physics , Montefiore Hospital and Medical Center , Bronx, New York, USA
                [3 ]departmentDepartment of Radiation Oncology , Dana-Farber Cancer Institute , Boston, Massachusetts, USA
                [4 ]departmentHuman Oncology , University of Wisconsin Madison School of Medicine and Public Health , Madison, Wisconsin, USA
                [5 ]departmentRadiation Oncology , UC Davis , Davis, California, USA
                [6 ]departmentHead and Neck Surgery , The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                [7 ]departmentDepartment of Radiation Oncology , Providence Portland Medical Center , Portland, Oregon, USA
                [8 ]departmentRadiation Oncology , Cedars-Sinai Medical Center , Los Angeles, California, USA
                [9 ]departmentThe Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, District of Columbia, USA
                [10 ]departmentRadiation Research Program , National Cancer Institute Division of Cancer Treatment and Diagnosis , Bethesda, Maryland, USA
                Author notes
                [Correspondence to ] Dr Mansoor M Ahmed; ahmedmm@ 123456mail.nih.gov
                Author information
                http://orcid.org/0000-0003-4426-0499
                http://orcid.org/0000-0003-0106-595X
                http://orcid.org/0000-0002-4634-9430
                Article
                jitc-2020-002038
                10.1136/jitc-2020-002038
                8031689
                33827904
                3579eb4a-9d69-40e2-8fea-0f6ebe0e62a0
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 14 February 2021
                Categories
                Review
                1506
                2521
                Custom metadata
                unlocked

                radiotherapy,immunotherapy,clinical trials as topic
                radiotherapy, immunotherapy, clinical trials as topic

                Comments

                Comment on this article