0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glomerular endothelial expression of type I IFN-stimulated gene, DExD/H-Box helicase 60 via toll-like receptor 3 signaling: possible involvement in the pathogenesis of lupus nephritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sustained type I interferon (IFN) activation via Toll-like receptor (TLR) 3, 7 and 9 signaling has been reported to play a pivotal role in the development of lupus nephritis (LN). Although type I IFN activation has been shown to induce interferon-stimulated genes (ISGs) expression in systemic lupus erythematosus, the implication of ISGs expression in intrinsic glomerular cells remains largely unknown.

          Methods

          We treated cultured human glomerular endothelial cells (GECs) with polyinosinic-polycytidylic acid (poly IC), R848, and CpG (TLR3, TLR7, and TLR9 agonists, respectively) and analyzed the expression of DExD/H-Box Helicase 60 (DDX60), a representative ISG, using quantitative reverse transcription-polymerase chain reaction and western blotting. Additionally, RNA interference against IFN-β or DDX60 was performed. Furthermore, cleavage of caspase 9 and poly (ADP-ribose) polymerase (PARP), markers of cells undergoing apoptosis, was examined using western blotting. We conducted an immunofluorescence study to examine endothelial DDX60 expression in biopsy specimens from patients with LN.

          Results

          We observed that endothelial expression of DDX60 was induced by poly IC but not by R848 or CpG, and RNA interference against IFN-β inhibited poly IC-induced DDX60 expression. DDX60 knockdown induced cleavage of caspase 9 and PARP. Intense endothelial DDX60 expression was observed in biopsy specimens from patients with diffuse proliferative LN.

          Conclusion

          Glomerular endothelial DDX60 expression may prevent apoptosis, which is involved in the pathogenesis of LN. Modulating the upregulation of the regional innate immune system via TLR3 signaling may be a promising treatment target for LN.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          TLR signaling.

          The Toll-like receptor (TLR) family plays an instructive role in innate immune responses against microbial pathogens, as well as the subsequent induction of adaptive immune responses. TLRs recognize specific molecular patterns found in a broad range of microbial pathogens such as bacteria and viruses, triggering inflammatory and antiviral responses and dendritic cell maturation, which result in the eradication of invading pathogens. Individual TLRs interact with different combinations of adapter proteins and activate various transcription factors such as nuclear factor (NF)-kappaB, activating protein-1 and interferon regulatory factors, driving a specific immune response. This review outlines the recent advances in our understanding of TLR-signaling pathways and their roles in immune responses. Further, we also discuss a new concept of TLR-independent mechanisms for recognition of microbial pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update.

            Poly(ADP-ribosylation) is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. The best known poly(ADP-ribosylating) enzyme, PARP-1, is a DNA nick sensor and uses betaNAD(+) to form polymers of ADP-ribose which are further bound to nuclear protein acceptors. To strictly regulate poly(ADP-ribose) turnover, its degradation is assured by the enzyme poly(ADP-ribose) glycohydrolase (PARG). During apoptosis, PARP-1 plays two opposite roles: its stimulation leads to poly(ADP-ribose) synthesis, whereas caspases cause PARP-1 cleavage and inactivation. PARP-1 proteolysis produces an 89 kDa C-terminal fragment, with a reduced catalytic activity, and a 24 kDa N-terminal peptide, which retains the DNA binding domains. The fate and the possible role of these fragments during apoptosis will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systemic Lupus Erythematosus--A Disease with A Dysregulated Type I Interferon System.

              Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by the loss of tolerance to nuclear antigens, immune complex formation and inflammation in multiple organs. The disease is very heterogeneous, and most clinicians consider SLE as a group of diseases with similar features where the pathogenesis is driven by a combination of genetic and environmental factors. One of the most prominent features, shared by the majority of patients with SLE, is a continuous activation of the type I interferon (IFN) system, which manifests as increased serum levels of IFNα and/or an increased expression of type I IFN-induced genes, a so-called type I IFN signature. The mechanisms behind this IFN signature have partly been clarified during recent years, although the exact function of the IFN-regulated genes in the disease process is unclear. In this review, we will describe the type I IFN system and its regulation and summarize the numerous findings implicating an important ethiopathogenic role of a dysregulated type I IFN system in SLE. Furthermore, strategies to therapeutically target the type I IFN system that are currently evaluated preclinically and in clinical trials will be mentioned.
                Bookmark

                Author and article information

                Journal
                Ren Fail
                Ren Fail
                Renal Failure
                Taylor & Francis
                0886-022X
                1525-6049
                7 April 2022
                2022
                7 April 2022
                : 44
                : 1
                : 137-145
                Affiliations
                [a ]Department of Pediatrics, Hirosaki University Hospital , Hirosaki, Japan
                [b ]Department of Vascular Biology, Hirosaki University Graduate School of Medicine , Hirosaki, Japan
                [c ]Department of School Health Science, Hirosaki University Faculty of Education , Hirosaki, Japan
                Author notes
                CONTACT Hiroshi Tanaka hirotana@ 123456hirosaki-u.ac.jp Department of School Health Science, Hirosaki University Faculty of Education , Hirosaki, 036-8560, Aomori, Japan
                Article
                2027249
                10.1080/0886022X.2022.2027249
                9004514
                35392757
                356d94ab-e426-48eb-9511-4f358780959f
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 5, Tables: 0, Pages: 9, Words: 4540
                Categories
                Research Article
                Laboratory Study

                Nephrology
                poly (adp-ribose) polymerase (parp),dexd/h-box helicase 60 (ddx60),glomerular endothelial cells,lupus nephritis,toll-like receptor

                Comments

                Comment on this article