5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiotensin-(1-7) improves cognitive function and reduces inflammation in mice following mild traumatic brain injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Traumatic brain injury (TBI) is a leading cause of disability in the US. Angiotensin 1-7 (Ang-1-7), an endogenous peptide, acts at the G protein coupled MAS1 receptors (MASR) to inhibit inflammatory mediators and decrease reactive oxygen species within the CNS. Few studies have identified whether Ang-(1-7) decreases cognitive impairment following closed TBI. This study examined the therapeutic effect of Ang-(1-7) on secondary injury observed in a murine model of mild TBI (mTBI) in a closed skull, single injury model.

          Materials and methods

          Male mice ( n = 108) underwent a closed skull, controlled cortical impact injury. Two hours after injury, mice were administered either Ang-(1-7) ( n = 12) or vehicle ( n = 12), continuing through day 5 post-TBI, and tested for cognitive impairment on days 1–5 and 18. pTau, Tau, GFAP, and serum cytokines were measured at multiple time points. Animals were observed daily for cognition and motor coordination via novel object recognition. Brain sections were stained and evaluated for neuronal injury.

          Results

          Administration of Ang-(1-7) daily for 5 days post-mTBI significantly increased cognitive function as compared to saline control-treated animals. Cortical and hippocampal structures showed less damage in the presence of Ang-(1-7), while Ang-(1-7) administration significantly changed the expression of pTau and GFAP in cortical and hippocampal regions as compared to control.

          Discussion

          These are among the first studies to demonstrate that sustained administration of Ang-(1-7) following a closed-skull, single impact mTBI significantly improves neurologic outcomes, potentially offering a novel therapeutic modality for the prevention of long-term CNS impairment following such injuries.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Position statement: definition of traumatic brain injury.

          A clear, concise definition of traumatic brain injury (TBI) is fundamental for reporting, comparison, and interpretation of studies on TBI. Changing epidemiologic patterns, an increasing recognition of significance of mild TBI, and a better understanding of the subtler neurocognitive neuroaffective deficits that may result from these injuries make this need even more critical. The Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health has therefore formed an expert group that proposes the following definition: In this article, we discuss criteria for considering or establishing a diagnosis of TBI, with a particular focus on the problems how a diagnosis of TBI can be made when patients present late after injury and how mild TBI may be differentiated from non-TBI causes with similar symptoms. Technologic advances in magnetic resonance imaging and the development of biomarkers offer potential for improving diagnostic accuracy in these situations. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas.

            The renin-angiotensin system plays a critical role in blood pressure control and body fluid and electrolyte homeostasis. Besides angiotensin (Ang) II, other Ang peptides, such as Ang III [Ang-(2-8)], Ang IV [Ang-(3-8)], and Ang-(1-7) may also have important biological activities. Ang-(1-7) has become an angiotensin of interest in the past few years, because its cardiovascular and baroreflex actions counteract those of Ang II. Unique angiotensin-binding sites specific for this heptapeptide and studies with a selective Ang-(1-7) antagonist indicated the existence of a distinct Ang-(1-7) receptor. We demonstrate that genetic deletion of the G protein-coupled receptor encoded by the Mas protooncogene abolishes the binding of Ang-(1-7) to mouse kidneys. Accordingly, Mas-deficient mice completely lack the antidiuretic action of Ang-(1-7) after an acute water load. Ang-(1-7) binds to Mas-transfected cells and elicits arachidonic acid release. Furthermore, Mas-deficient aortas lose their Ang-(1-7)-induced relaxation response. Collectively, these findings identify Mas as a functional receptor for Ang-(1-7) and provide a clear molecular basis for the physiological actions of this biologically active peptide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

              A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                04 August 2022
                2022
                : 16
                : 903980
                Affiliations
                [1] 1Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona , Tucson, AZ, United States
                [2] 2Department of Surgery, College of Medicine and Health Sciences, University of Arizona , Tucson, AZ, United States
                [3] 3Department of Physiology, College of Medicine and Health Sciences, University of Arizona , Tucson, AZ, United States
                Author notes

                Edited by: Patricio Huerta, Feinstein Institute for Medical Research, United States

                Reviewed by: Chunyan Li, Feinstein Institute for Medical Research, United States; Roman Sankowski, University of Freiburg Medical Center, Germany

                *Correspondence: Todd W. Vanderah vanderah@ 123456email.arizona.edu

                This article was submitted to Pathological Conditions, a section of the journal Frontiers in Behavioral Neuroscience

                †These authors share first authorship

                Article
                10.3389/fnbeh.2022.903980
                9386567
                3563682e-91f1-4c93-a257-7cfd872095f9
                Copyright © 2022 Bruhns, Sulaiman, Gaub, Bae, Davidson Knapp, Larson, Smith, Coleman, Staatz, Sandweiss, Joseph, Hay, Largent-Milnes and Vanderah.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 March 2022
                : 11 July 2022
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 32, Pages: 14, Words: 7822
                Categories
                Behavioral Neuroscience
                Original Research

                Neurosciences
                traumatic brain injury,angiotensin 1-7,mas receptor,cognitive impairment,ptau
                Neurosciences
                traumatic brain injury, angiotensin 1-7, mas receptor, cognitive impairment, ptau

                Comments

                Comment on this article