10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Toward a unified framework for interpreting machine-learning models in neuroimaging

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Distributed and overlapping representations of faces and objects in ventral temporal cortex.

          The functional architecture of the object vision pathway in the human brain was investigated using functional magnetic resonance imaging to measure patterns of response in ventral temporal cortex while subjects viewed faces, cats, five categories of man-made objects, and nonsense pictures. A distinct pattern of response was found for each stimulus category. The distinctiveness of the response to a given category was not due simply to the regions that responded maximally to that category, because the category being viewed also could be identified on the basis of the pattern of response when those regions were excluded from the analysis. Patterns of response that discriminated among all categories were found even within cortical regions that responded maximally to only one category. These results indicate that the representations of faces and objects in ventral temporal cortex are widely distributed and overlapping.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Information-based functional brain mapping.

            The development of high-resolution neuroimaging and multielectrode electrophysiological recording provides neuroscientists with huge amounts of multivariate data. The complexity of the data creates a need for statistical summary, but the local averaging standardly applied to this end may obscure the effects of greatest neuroscientific interest. In neuroimaging, for example, brain mapping analysis has focused on the discovery of activation, i.e., of extended brain regions whose average activity changes across experimental conditions. Here we propose to ask a more general question of the data: Where in the brain does the activity pattern contain information about the experimental condition? To address this question, we propose scanning the imaged volume with a "searchlight," whose contents are analyzed multivariately at each location in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A neuromarker of sustained attention from whole-brain functional connectivity

              Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple way to measure a person’s overall attentional abilities. Because behavioral measures are diverse and difficult to standardize, we pursued a neuromarker of an important aspect of attention, sustained attention, using functional magnetic resonance imaging. To this end, we identified functional brain networks whose strength during a sustained attention task predicted individual differences in performance. Models based on these networks generalized to previously unseen individuals, even predicting performance from resting-state connectivity alone. Furthermore, these same models predicted a clinical measure of attention—symptoms of attention deficit hyperactivity disorder—from resting-state connectivity in an independent sample of children and adolescents. These results demonstrate that whole-brain functional network strength provides a broadly applicable neuromarker of sustained attention.
                Bookmark

                Author and article information

                Journal
                Nature Protocols
                Nat Protoc
                Springer Science and Business Media LLC
                1754-2189
                1750-2799
                March 18 2020
                Article
                10.1038/s41596-019-0289-5
                32203486
                3558bb2c-691d-425c-b56b-9fbb0c37352f
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article