7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.

          Related collections

          Most cited references256

          • Record: found
          • Abstract: found
          • Article: not found

          Commercial applications of microalgae.

          The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine. However, microalgal biotechnology only really began to develop in the middle of the last century. Nowadays, there are numerous commercial applications of microalgae. For example, (i) microalgae can be used to enhance the nutritional value of food and animal feed owing to their chemical composition, (ii) they play a crucial role in aquaculture and (iii) they can be incorporated into cosmetics. Moreover, they are cultivated as a source of highly valuable molecules. For example, polyunsaturated fatty acid oils are added to infant formulas and nutritional supplements and pigments are important as natural dyes. Stable isotope biochemicals help in structural determination and metabolic studies. Future research should focus on the improvement of production systems and the genetic modification of strains. Microalgal products would in that way become even more diversified and economically competitive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.

            Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Commercial potential for Haematococcus microalgae as a natural source of astaxanthin.

              As a result of high production costs, commercial products from microalgae must command high prices. Astaxanthin produced by Haematococcus is a product that has become a commercial reality through novel and advanced technology. Cultivation methods have been developed to produce Haematococcus containing 1.5-3.0% astaxanthin by dry weight, with potential applications as a pigment source in aquaculture, poultry feeds and in the worldwide nutraceutical market.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 April 2021
                May 2021
                : 22
                : 9
                : 4383
                Affiliations
                Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; assunta.saide@ 123456szn.it (A.S.); kevin.martinez@ 123456szn.it (K.A.M.); adrianna.ianora@ 123456szn.it (A.I.)
                Author notes
                [* ]Correspondence: chiara.lauritano@ 123456szn.it ; Tel.: +39-081-583-3221
                Author information
                https://orcid.org/0000-0002-5978-7827
                https://orcid.org/0000-0003-4580-9594
                Article
                ijms-22-04383
                10.3390/ijms22094383
                8122763
                33922258
                3517bf8b-8d20-4135-9c06-11831b6fd76e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 29 March 2021
                : 18 April 2021
                Categories
                Review

                Molecular biology
                microalgae,pharmaceuticals,bioactive molecules,marine biotechnology
                Molecular biology
                microalgae, pharmaceuticals, bioactive molecules, marine biotechnology

                Comments

                Comment on this article