1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-resolved transcriptomic and proteomic profiling of Heyndrickxia coagulans during NaOH-buffered L-lactic acid production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The L-lactic acid (L-LA) fermentation process, based on sodium hydroxide neutralization, demonstrates environmental friendliness during product extraction. However, lactate fermentation is hindered by the pronounced stress effect of sodium lactate on the strain compared with calcium lactate. In this study, we performed time-resolved transcriptomic and proteomic analyses of Heyndrickxia coagulans DSM1 during NaOH-buffered L-LA production. The expression levels of the glycolytic genes demonstrated an initial increase followed by a subsequent decrease, whereas the tricarboxylic acid cycle genes exhibited an initial decrease followed by a subsequent increase throughout the fermentation process. Moreover, we identified clusters of genes consisting of transcription factors and ATP-binding cassette (ABC) transporters that demonstrate a progressive elevation of expression levels throughout the fermentation process, with significant upregulation observed at later stages. This investigation yields valuable insights into the response mechanisms of H. coagulans during NaOH-buffered L-LA fermentation and presents potential targets for metabolic engineering.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          STEM: a tool for the analysis of short time series gene expression data

          Background Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data. Results We introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology. Conclusion The unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The MerR family of transcriptional regulators.

            The MerR family is a group of transcriptional activators with similar N-terminal helix-turn-helix DNA binding regions and C-terminal effector binding regions that are specific to the effector recognised. The signature of the family is amino acid similarity in the first 100 amino acids, including a helix-turn-helix motif followed by a coiled-coil region. With increasing recognition of members of this class over the last decade, particularly with the advent of rapid bacterial genome sequencing, MerR-like regulators have been found in a wide range of bacterial genera, but not yet in archaea or eukaryotes. The few MerR-like regulators that have been studied experimentally have been shown to activate suboptimal sigma(70)-dependent promoters, in which the spacing between the -35 and -10 elements recognised by the sigma factor is greater than the optimal 17+/-1 bp. Activation of transcription is through protein-dependent DNA distortion. The majority of regulators in the family respond to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. A subgroup of the family activates transcription in response to metal ions. This subgroup shows sequence similarity in the C-terminal effector binding region as well as in the N-terminal region, but it is not yet clear how metal discrimination occurs. This subgroup of MerR family regulators includes MerR itself and may have evolved to generate a variety of specific metal-responsive regulators by fine-tuning the sites of metal recognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poly‐Lactic acid ( PLA ): synthesis and biomedical applications

              Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Role:
                Role: Role:
                Role: Role:
                URI : https://loop.frontiersin.org/people/765606/overviewRole: Role: Role: Role: Role:
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                29 November 2023
                2023
                : 14
                : 1296692
                Affiliations
                College of Pharmacy, Binzhou Medical University , Yantai, China
                Author notes

                Edited by: Robert Jansen, Radboud University, Netherlands

                Reviewed by: Victor Ujor, University of Wisconsin-Madison, United States; Kaemwich Jantama, Suranaree University of Technology, Thailand

                *Correspondence: Jiayang Qin, qinjy@ 123456bzmc.edu.cn

                These authors share first authorship

                Article
                10.3389/fmicb.2023.1296692
                10716427
                38094625
                34fb33d3-d3a1-4788-8d52-09bb537efeb4
                Copyright © 2023 Huang, Tian, Wang and Qin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 September 2023
                : 16 November 2023
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 39, Pages: 14, Words: 8041
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 31970086
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China (31970086) and the Shandong Provincial Youth Innovation Team Education Program.
                Categories
                Microbiology
                Original Research
                Custom metadata
                Microbial Physiology and Metabolism

                Microbiology & Virology
                heyndrickxia coagulans,l-lactic acid,sodium hydroxide,time-resolved,transcriptomic and proteomic profiling

                Comments

                Comment on this article