0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stretchable, Low-Hysteresis, and Recyclable Ionogel by Ionic Liquid Catalyst and Mixed Ionic Liquid-Induced Phase Separation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Protic ionic liquids: properties and applications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ionogels, ionic liquid based hybrid materials.

            The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix, and by encapsulation of molecular species (from metal complexes to enzymes) in the immobilized IL phase, which opens new routes for designing advanced materials, especially (bio)catalytic membranes, sensors and drug release systems (194 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links

              In gels and elastomers, the role of entanglements on deformation has been studied, but their effects on fracture, fatigue, and friction are less well understood. In this study, we synthesized polymers in which entanglements greatly outnumber cross-links. The dense entanglements enable transmission of tension in a polymer chain along its length and to many other chains. The sparse cross-links prevent the polymer chains from disentangling. These polymers have high toughness, strength, and fatigue resistance. After submersion in water, the polymers swell to equilibrium, and the resulting hydrogels have low hysteresis, low friction, and high wear resistance.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Sustainable Chemistry & Engineering
                ACS Sustainable Chem. Eng.
                American Chemical Society (ACS)
                2168-0485
                2168-0485
                October 16 2023
                September 29 2023
                October 16 2023
                : 11
                : 41
                : 15031-15042
                Affiliations
                [1 ]College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
                Article
                10.1021/acssuschemeng.3c03791
                34fa8473-a783-4a74-b245-bf31c8acfbd1
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article