14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Fixed-Bed Column with an Agro-Waste Biomass Composite for Controlled Separation of Sulfate from Aqueous Media

      , ,
      Separations
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An agro-waste composite with a pelletized form was prepared and characterized via IR and 13C solids NMR spectroscopy. Thermal gravimetry analysis (TGA) was used to study the weight loss profiles, while SEM images provided insight on the biocomposite morphology, along with characterization of the sulfate adsorption properties under equilibrium and dynamic conditions. The sulfate monolayer adsorption capacity (qe = 23 mg/g) of the prepared agro-waste pellets was estimated from the adsorption isotherm results by employing the Langmuir model, and comparable fitting results were obtained by the Freundlich model. The dynamic adsorption properties were investigated via adsorption studies with a fixed bed column at pH 5.2. The effects of various parameters, including flow rate, bed height and initial concentrations of sulfate, were evaluated to estimate the optimal conditions for the separation of sulfate. The experimental data of the breakthrough curves were analyzed using the Thomas and Yoon–Nelson models, which provided satisfactory best-fits for the fixed bed kinetic adsorption results. The predicted adsorption capacities for all samples according to the Thomas model concur with the experimental values. The optimum conditions reported herein afford the highest dynamic adsorption capacity (30 mg/g) as follows: 1100 mg/L initial sulfate concentration, 30 cm bed height and 5 mL/min flow rate. The breakthrough time was measured to be 550 min. This study contributes to a strategy for controlled separation of sulfate using a sustainable biocomposite material that is suitable for fixed-bed column point-of-use water treatment systems.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Conventional and non-conventional adsorbents for wastewater treatment

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Water purification by using Adsorbents: A Review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SEPAF2
                Separations
                Separations
                MDPI AG
                2297-8739
                April 2023
                April 17 2023
                : 10
                : 4
                : 262
                Article
                10.3390/separations10040262
                34f6f8ea-c487-4f11-92fe-d0241b8fb059
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article