10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii+

      , ,
      The Plant Journal
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of Chlamydomonas reinhardtii as a model system has been hindered by difficulties encountered in expressing foreign genes. We have synthesised a gene encoding green fluorescent protein (GFP) adapted to the codon usage of C. reinhardtii (cgfp). After verifying the gene was functional in Escherichia coli, the cgfp was fused in frame to the phleomycin resistance gene ble from Streptoalloteichus hindustanus and expressed in C. reinhardtii under control of the rbcS2 promoter and intron sequences. The GFP-fluorescence was seen only in the nucleus demonstrating the nuclear accumulation of the Ble-GFP fusion protein. The cgfp was also fused to the chlamyopsin gene, cop, and expressed in C. reinhardtii under control of the cop promoter. The eyespot became fluorescent indicating that the opsin-GFP fusion protein was correctly directed into the eyespot along with the endogenous unmodified opsin. We conclude that cgfp provides a useful tool to visualize protein synthesis and localisation in vivo in C. reinhardtii and possibly in related green algal species.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Wavelength mutations and posttranslational autoxidation of green fluorescent protein.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green fluorescent protein as a noninvasive intracellular pH indicator.

              It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in 5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.
                Bookmark

                Author and article information

                Journal
                The Plant Journal
                Plant J
                Wiley
                0960-7412
                1365-313X
                August 1999
                August 1999
                : 19
                : 3
                : 353-361
                Article
                10.1046/j.1365-313X.1999.00526.x
                10476082
                34d7d080-4a32-45eb-bc24-ad950e670a58
                © 1999

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article