2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High-definition likelihood inference of genetic correlations across human complex traits

      , ,
      Nature Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits

          Multiple methods have been developed to estimate narrow-sense heritability, h2 , using single nucleotide polymorphisms (SNPs) in unrelated individuals. However, a comprehensive evaluation of these methods has not yet been performed, leading to confusion and discrepancy in the literature. We present the most thorough and realistic comparison of these methods to date. We utilized thousands of real whole genome sequences to simulate phenotypes under varying genetic architectures and confounding variables, and used array, imputed, or whole genome sequence SNPs to obtain “SNP-heritability” estimates (ĥ 2 SNP). We show that ĥ 2 SNP can be highly sensitive to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium (LD) of underlying causal variants, but that methods that bin SNPs according to minor allele frequency and LD are less sensitive to these assumptions across a wide range of genetic architectures and possible confounding factors. These findings provide guidance for best practices and proper interpretation of published estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior

            Twin and family studies have shown that same-sex sexual behavior is partly genetically influenced, but previous searches for specific genes involved have been underpowered. We performed a genome-wide association study (GWAS) on 477,522 individuals, revealing five loci significantly associated with same-sex sexual behavior. In aggregate, all tested genetic variants accounted for 8 to 25% of variation in same-sex sexual behavior, only partially overlapped between males and females, and do not allow meaningful prediction of an individual’s sexual behavior. Comparing these GWAS results with those for the proportion of same-sex to total number of sexual partners among nonheterosexuals suggests that there is no single continuum from opposite-sex to same-sex sexual behavior. Overall, our findings provide insights into the genetics underlying same-sex sexual behavior and underscore the complexity of sexuality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              SumHer better estimates the SNP heritability of complex traits from summary statistics

              We present SumHer, software for estimating confounding bias, SNP heritability, enrichments of heritability and genetic correlations using summary statistics from genome-wide association studies. The key difference between SumHer and the existing software LD Score Regression (LDSC) is that SumHer allows the user to specify the heritability model. We apply SumHer to results from 24 large-scale association studies (average sample size 121,000) using our recommended heritability model. We show that these studies tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci was under-reported by about a quarter. We also estimate enrichments for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further six categories with above 3-fold enrichment. By contrast, our analysis using SumHer finds that none of the categories have enrichment above 2-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                June 29 2020
                Article
                10.1038/s41588-020-0653-y
                32601477
                3488cac4-d76e-4cce-b917-67833a05ff55
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,386

                Cited by80

                Most referenced authors1,040