4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioconversion of organic wastes into value-added products: A review

      , , , , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Heterotrophic cultures of microalgae: metabolism and potential products.

          This review analyzes the current state of a specific niche of microalgae cultivation; heterotrophic growth in the dark supported by a carbon source replacing the traditional support of light energy. This unique ability of essentially photosynthetic microorganisms is shared by several species of microalgae. Where possible, heterotrophic growth overcomes major limitations of producing useful products from microalgae: dependency on light which significantly complicates the process, increase costs, and reduced production of potentially useful products. As a general role, and in most cases, heterotrophic cultivation is far cheaper, simpler to construct facilities, and easier than autotrophic cultivation to maintain on a large scale. This capacity allows expansion of useful applications from diverse species that is now very limited as a result of elevated costs of autotrophy; consequently, exploitation of microalgae is restricted to small volume of high-value products. Heterotrophic cultivation may allow large volume applications such as wastewater treatment combined, or separated, with production of biofuels. In this review, we present a general perspective of the field, describing the specific cellular metabolisms involved and the best-known examples from the literature and analyze the prospect of potential products from heterotrophic cultures. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pretreatment of lignocellulosic biomass for enhanced biogas production

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogas production: current state and perspectives.

              Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                January 2022
                January 2022
                : 344
                : 126398
                Article
                10.1016/j.biortech.2021.126398
                34822979
                3478c677-c6c5-47f6-ab7e-72be640542f1
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article