8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The noisy voter model under the influence of contrarians

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The influence of contrarians on the noisy voter model is studied at the mean-field level. The noisy voter model is a variant of the voter model where agents can adopt two opinions, optimistic or pessimistic, and can change them by means of an imitation (herding) and an intrinsic (noise) mechanisms. An ensemble of noisy voters undergoes a finite-size phase transition, upon increasing the relative importance of the noise to the herding, form a bimodal phase where most of the agents shear the same opinion to a unimodal phase where almost the same fraction of agent are in opposite states. By the inclusion of contrarians we allow for some voters to adopt the opposite opinion of other agents (anti-herding). We first consider the case of only contrarians and show that the only possible steady state is the unimodal one. More generally, when voters and contrarians are present, we show that the bimodal-unimodal transition of the noisy voter model prevails only if the number of contrarians in the system is smaller than four, and their characteristic rates are small enough. For the number of contrarians bigger or equal to four, the voters and the contrarians can be seen only in the unimodal phase. Moreover, if the number of voters and contrarians, as well as the noise and herding rates, are of the same order, then the probability functions of the steady state are very well approximated by the Gaussian distribution.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Ants, Rationality, and Recruitment

          A Kirman (1993)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sociophysics: A review of Galam models

            We review a series of models of sociophysics introduced by Galam and Galam et al in the last 25 years. The models are divided in five different classes, which deal respectively with democratic voting in bottom up hierarchical systems, decision making, fragmentation versus coalitions, terrorism and opinion dynamics. For each class the connexion to the original physical model and technics are outlined underlining both the similarities and the differences. Emphasis is put on the numerous novel and counterintuitive results obtained with respect to the associated social and political framework. Using these models several major real political events were successfully predicted including the victory of the French extreme right party in the 2000 first round of French presidential elections, the voting at fifty - fifty in several democratic countries (Germany, Italy, Mexico), and the victory of the no to the 2005 French referendum on the European constitution. The perspectives and the challenges to make sociophysics a predictive solid field of science are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach

                Bookmark

                Author and article information

                Journal
                09 July 2018
                Article
                1807.03176
                345e99b4-d159-4cc2-b67b-229c49d896c8

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                physics.soc-ph

                General physics
                General physics

                Comments

                Comment on this article