14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

          Related collections

          Author and article information

          Journal
          Bioorganic & Medicinal Chemistry Letters
          Bioorganic & Medicinal Chemistry Letters
          Elsevier BV
          0960894X
          May 2015
          May 2015
          : 25
          : 10
          : 2065-2067
          Article
          10.1016/j.bmcl.2015.03.091
          4416209
          25900220
          343e2f5e-e79d-4592-962b-3eb5b44a93f6
          © 2015

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article