6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Optimized structures for vibration attenuation and sound control in nature: A review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references249

          • Record: found
          • Abstract: found
          • Article: not found

          The conflicts between strength and toughness.

          The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.

            Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomaterial systems for mechanosensing and actuation.

              Living organisms use composite materials for various functions, such as mechanical support, protection, motility and the sensing of signals. Although the individual components of these materials may have poor mechanical qualities, they form composites of polymers and minerals with a remarkable variety of functional properties. Researchers are now using these natural systems as models for artificial mechanosensors and actuators, through studying both natural structures and their interactions with the environment. In addition to inspiring the design of new materials, analysis of natural structures on this basis can provide insight into evolutionary constraints on structure-function relationships in living organisms and the variety of structural solutions that emerged from these constraints.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Matter
                Matter
                Elsevier BV
                25902385
                October 2022
                October 2022
                : 5
                : 10
                : 3311-3340
                Article
                10.1016/j.matt.2022.07.023
                343144b9-068d-4772-8e2c-2dea5539ba7f
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article