37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Draft Whole-Genome Sequence of Bacillus altitudinis Strain B-388, a Producer of Extracellular RNase

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we present a draft genome sequence of Bacillus altitudinis strain B-388, including a putative plasmid. The strain was isolated from the intestine of Indian meal moth, a common pest of stored grains, and it is characterized by the production of extracellular RNase, similar to binase, which is of interest for comparative studies and biotechnology.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes.

          Four novel bacterial strains were isolated from cryogenic tubes used to collect air samples at altitudes of 24, 28 and 41 km. The four strains, 24K(T), 28K(T), 41KF2a(T) and 41KF2b(T), were identified as members of the genus Bacillus. Phylogenetic analysis based on 16S rRNA gene sequences indicated that three of the strains, 24K(T), 28K(T) and 41KF2a(T), are very similar to one another (>98 % sequence similarity) and show a similarity of 98-99 % with Bacillus licheniformis and 98 % with Bacillus sonorensis. DNA-DNA hybridization studies showed that strains 24K(T), 28K(T) and 41KF2a(T) exhibit <70 % similarity with each other and with B. licheniformis and B. sonorensis. Differences in phenotypic and chemotaxonomic characteristics between the novel strains and B. licheniformis and B. sonorensis further confirmed that these three isolates are representatives of three separate novel species. Strain 41KF2b(T) showed 100 % 16S rRNA gene sequence similarity to Bacillus pumilus, but differed from its nearest phylogenetic neighbour in a number of phenotypic and chemotaxonomic characteristics and showed only 55 % DNA-DNA relatedness. Therefore, the four isolates represent four novel species for which the names Bacillus aerius sp. nov. (type strain, 24K(T)=MTCC 7303(T)=JCM 13348(T)), Bacillus aerophilus sp. nov. (type strain, 28K(T)=MTCC 7304(T)=JCM 13347(T)), Bacillus stratosphericus sp. nov. (type strain, 41KF2a(T)=MTCC 7305(T)=JCM 13349(T)) and Bacillus altitudinis sp. nov. (type strain, 41KF2b(T)=MTCC 7306(T)=JCM 13350(T)) are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Barnase and binase: twins with distinct fates.

            RNases are enzymes that cleave RNAs, resulting in remarkably diverse biological consequences. Many RNases are cytotoxic. In some cases, they attack selectively malignant cells triggering an apoptotic response. A number of eukaryotic and bacterial RNase-based strategies are being developed for use in anticancer and antiviral therapy. However, the physiological functions of these RNases are often poorly understood. This review focuses on the properties of the extracellular RNases from Bacillus amyloliquefaciens (barnase) and Bacillus intermedius (binase), the characteristics of their biosynthesis regulation and their physiological role, with an emphasis on the similarities and differences. Barnase and binase can be regarded as molecular twins according to their highly similar structure, physical-chemical and catalytic properties. Nevertheless, the 'life paths' of these enzymes are not the same, as their expression in bacteria is controlled by diverse signals. Binase is predominantly synthesized under phosphate starvation, whereas barnase production is strictly dependent on the multifunctional Spo0A regulator controlling sporulation, biofilm formation and cannibalism. Barnase and binase also have some distinctions in practical applications. Barnase was initially suggested to be useful in research and biotechnology as a tool for studying protein-protein interactions, for RNA elimination from biological samples, for affinity purification of RNase fusion proteins, for the development of cloning vectors and for sterility acquisition by transgenic plants. Binase, as later barnase, was tested for antiviral, antitumour and immunogenic effects. Both RNases have found their own niche in cancer research as a result of success in targeted delivery and selectivity towards tumour cells. © 2011 The Authors Journal compilation © 2011 FEBS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India.

              A total of 18 bacterial isolates were obtained from the rhizosphere of Sechium edule growing in the lower foothills of Darjeeling, India. The bacterial isolates were tested for PGPR traits in vitro such as phosphate solubilization, HCN, siderophore, IAA, chitinase, protease production as well as inhibition of pthytopathogens. Of all the bacterial isolates, one bacterium designated as BRHS/S-73 was found to possess all the tested characters which was identified on the basis of 16S rRNA gene sequence analysis as Bacillus altitudinis and was selected for in vivo studies. A significant improvement in growth measured in terms of increase in root length, shoot length, and increase in root and shoot biomass was observed when seeds of Vigna radiata, Cicer arietinum, and Glycine max were bacterized prior to sowing in field condition. Besides, the bacterium could also solubilize soil phosphate. Apart form growth promotion, root rot disease of Vigna radiata caused by Thanatephorus cucumeris was also significantly reduced by 74% when the bacterium was applied to the rhizosphere prior to pathogen challenge. The biocontrol efficacy of the bacterium was found to be 66.6% even after 30 days of pathogen inoculation. Activities of key defense related enzymes such as phenylalanine ammonia lyase, peroxidase, β-1,3-glucanase, and chitinase in both roots and leaves of treated plants were also enhanced. Results clearly suggest that B. altitudinis (BRHS/S-73) is a potential PGPR which can be used as efficient microorganism for enhancement of plant growth and suppression of fungal disease.
                Bookmark

                Author and article information

                Journal
                Genome Announc
                Genome Announc
                ga
                ga
                GA
                Genome Announcements
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2169-8287
                29 January 2015
                Jan-Feb 2015
                : 3
                : 1
                : e01502-14
                Affiliations
                [1]Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
                Author notes
                Address correspondence to Vera Ulyanova, ulyanova.vera@ 123456gmail.com .
                Article
                genomeA01502-14
                10.1128/genomeA.01502-14
                4319516
                25635022
                33fe26bf-207f-4c4e-ac18-2c6cb151c91e
                Copyright © 2015 Shah Mahmud et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 11 December 2014
                : 18 December 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 9, Pages: 1, Words: 936
                Categories
                Prokaryotes
                Custom metadata
                January/February 2015
                free

                Genetics
                Genetics

                Comments

                Comment on this article