130
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Genome streamlining in a cosmopolitan oceanic bacterium.

          The SAR11 clade consists of very small, heterotrophic marine alpha-proteobacteria that are found throughout the oceans, where they account for about 25% of all microbial cells. Pelagibacter ubique, the first cultured member of this clade, has the smallest genome and encodes the smallest number of predicted open reading frames known for a free-living microorganism. In contrast to parasitic bacteria and archaea with small genomes, P. ubique has complete biosynthetic pathways for all 20 amino acids and all but a few cofactors. P. ubique has no pseudogenes, introns, transposons, extrachromosomal elements, or inteins; few paralogs; and the shortest intergenic spacers yet observed for any cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introducing the bacterial 'chromid': not a chromosome, not a plasmid.

            In addition to the main chromosome, approximately one in ten bacterial genomes have a 'second chromosome' or 'megaplasmid'. Here, we propose that these represent a single class of elements that have a distinct and consistent set of properties, and suggest the term 'chromid' to distinguish them from both chromosomes and plasmids. Chromids carry some core genes, and their nucleotide composition and codon usage are very similar to those of the chromosomes they are associated with. By contrast, they have plasmid replication and partitioning systems and the majority of their genes confer accessory functions. Chromids seem particularly rich in genus-specific genes and appear to be 'reinvented' at the origin of a new genus. Copyright (c) 2010. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Environmental biology of the marine Roseobacter lineage.

              The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 March 2015
                2015
                : 6
                : 233
                Affiliations
                [1] 1Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
                [2] 2Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
                [3] 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
                Author notes

                Edited by: Hongyue Dang, Xiamen University, China

                Reviewed by: Lucas Stal, Netherlands Institute of Sea Research (NIOZ), Netherlands; Tom O. Delmont, Marine Biological Lab, USA

                *Correspondence: Heribert Cypionka, Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of Oldenburg, Carl-von-Ossietzky str. 9-11, Oldenburg 26129, Germany heribert.cypionka@ 123456uni-oldenburg.de

                This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2015.00233
                4373377
                25859246
                33f13343-6d35-4655-811c-1ad031fcc4ef
                Copyright © 2015 Soora, Tomasch, Wang, Michael, Petersen, Engelen, Wagner-Döebler and Cypionka.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 January 2015
                : 10 March 2015
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 47, Pages: 12, Words: 8365
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                aerobic anoxygenic photosynthesis,starvation,plasmid-maintenance,reactive oxygen species,light-stress adaptation,chlorophyll a biosynthesis

                Comments

                Comment on this article