4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular characterization of the interaction between human IgG and the M-related proteins from Streptococcus pyogenes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp–IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 ( p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host–pathogen interaction.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The global burden of group A streptococcal diseases.

          The global burden of disease caused by group A streptococcus (GAS) is not known. We review recent population-based data to estimate the burden of GAS diseases and highlight deficiencies in the available data. We estimate that there are at least 517,000 deaths each year due to severe GAS diseases (eg, acute rheumatic fever, rheumatic heart disease, post-streptococcal glomerulonephritis, and invasive infections). The prevalence of severe GAS disease is at least 18.1 million cases, with 1.78 million new cases each year. The greatest burden is due to rheumatic heart disease, with a prevalence of at least 15.6 million cases, with 282,000 new cases and 233,000 deaths each year. The burden of invasive GAS diseases is unexpectedly high, with at least 663,000 new cases and 163,000 deaths each year. In addition, there are more than 111 million prevalent cases of GAS pyoderma, and over 616 million incident cases per year of GAS pharyngitis. Epidemiological data from developing countries for most diseases is poor. On a global scale, GAS is an important cause of morbidity and mortality. These data emphasise the need to reinforce current control strategies, develop new primary prevention strategies, and collect better data from developing countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IgG Subclasses and Allotypes: From Structure to Effector Functions

            Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using circular dichroism spectra to estimate protein secondary structure.

              Circular dichroism (CD) is an excellent tool for rapid determination of the secondary structure and folding properties of proteins that have been obtained using recombinant techniques or purified from tissues. The most widely used applications of protein CD are to determine whether an expressed, purified protein is folded, or if a mutation affects its conformation or stability. In addition, it can be used to study protein interactions. This protocol details the basic steps of obtaining and interpreting CD data, and methods for analyzing spectra to estimate the secondary structural composition of proteins. CD has the advantage that measurements may be made on multiple samples containing < or =20 microg of proteins in physiological buffers in a few hours. However, it does not give the residue-specific information that can be obtained by x-ray crystallography or NMR.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biol Chem
                J Biol Chem
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology
                0021-9258
                1083-351X
                03 January 2024
                February 2024
                03 January 2024
                : 300
                : 2
                : 105623
                Affiliations
                [1 ]Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
                [2 ]Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV), Université Libre de Bruxelles, Brussels, Belgium
                [3 ]The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
                [4 ]The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, QLD, Australia
                [5 ]Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia
                Author notes
                []For correspondence: Martina Sanderson-Smith martina@ 123456uow.edu.au
                Article
                S0021-9258(23)02652-2 105623
                10.1016/j.jbc.2023.105623
                10844976
                38176650
                33eac2b3-f10c-411e-85b1-22f8b16f60d1
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 October 2023
                : 4 December 2023
                Categories
                Research Article Collection: Microbiology

                Biochemistry
                m-related protein,m protein family,immunoglobulin g,binding stoichiometry,binding affinity,streptococcus pyogenes,group a streptococcus,subclass preferences,virulence,pathogenesis

                Comments

                Comment on this article