4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clinical Efficacy of Azithromycin in Lower Respiratory Tract Infections

      , , , , ,
      Journal of Chemotherapy
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          The pharmacokinetics of azithromycin in human serum and tissues

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms.

            The macrolide antibiotic azithromycin (CP-62,993; 9-deoxo-9a-methyl-9a-aza-9a-homoerythromycin A; also designated XZ-450 [Pliva Pharmaceuticals, Zagreb, Yugoslavia]) showed a significant improvement in potency against gram-negative organisms compared with erythromycin while retaining the classic erythromycin spectrum. It was up to four times more potent than erythromycin against Haemophilus influenzae and Neisseria gonorrhoeae and twofold more potent against Branhamella catarrhalis, Campylobacter species, and Legionella species. It had activity similar to that of erythromycin against Chlamydia spp. Azithromycin was significantly more potent versus many genera of the family Enterobacteriaceae; its MIC for 90% of strains of Escherichia, Salmonella, Shigella, and Yersinia was less than or equal to 4 micrograms/ml, compared with 16 to 128 micrograms/ml for erythromycin. Azithromycin inhibited the majority of gram-positive organisms at less than or equal to 1 micrograms/ml. It displayed cross-resistance to erythromycin-resistant Staphylococcus and Streptococcus isolates. It had moderate activity against Bacteroides fragilis and was comparable to erythromycin against other anaerobic species. Azithromycin also demonstrated improved bactericidal activity in comparison with erythromycin. The mechanism of action of azithromycin was similar to that of erythromycin since azithromycin competed effectively for [14C]erythromycin ribosomebinding sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection.

              Azithromycin, a novel azalide antibiotic, concentrated in human and mouse polymorphonuclear leukocytes (PMNs), murine peritoneal macrophages, and mouse and rat alveolar macrophages, attaining intracellular concentrations up to 226 times the external concentration in vitro. In murine peritoneal macrophages, azithromycin achieved concentration gradients (internal to external) up to 26 times higher than erythromycin. The cellular uptake of azithromycin was dependent on temperature, viability, and pH and was decreased by 2,4-dinitrophenol. Azithromycin did not decrease phagocyte-mediated bactericidal activity or affect PMN or macrophage oxidative burst activity (H2O2 release or Nitro Blue Tetrazolium reduction, respectively). Azithromycin remained in cells for several hours, even after extracellular drug was removed. However, its release was significantly enhanced by phagocytosis of Staphylococcus aureus (82 versus 23% by 1.5 h). In vivo, 0.05 micrograms of azithromycin was found in peritoneal fluids of mice 20 h after oral treatment with a dose of 50 mg/kg. Following caseinate-induced PMN infiltration, there was a sixfold increase in peritoneal cavity azithromycin to 0.32 micrograms, most of which was intracellular. Therefore, the uptake, transport, and later release of azithromycin by these cells demonstrate that phagocytes may deliver active drug to sites of infection.
                Bookmark

                Author and article information

                Journal
                Journal of Chemotherapy
                Journal of Chemotherapy
                Informa UK Limited
                1120-009X
                1973-9478
                July 15 2016
                February 1993
                July 15 2016
                February 1993
                : 5
                : 1
                : 32-36
                Article
                10.1080/1120009X.1993.11739206
                33dd8795-a510-45ac-afda-cd4ad83ffaa4
                © 1993
                History

                Comments

                Comment on this article