11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of magnetic fields in the formation of high-mass stars is still under debate, and recent measurements of their orientation and strength by using polarized maser emissions are contributing new insights. Masers polarization, in particular of the 6.7-GHz methanol masers, are one of the best probes of the magnetic field morphologies around massive protostars. Determining the magnetic field morphology around an increasing number of massive protostars at milliarcsecond resolution by observing 6.7-GHz methanol masers is crucial to better understand the role of magnetic fields in massive star formation.The First EVN Group consists of 4 massive star-forming complexes: W51, W48, IRAS18556+0138, and W3(OH). These contain well-studied \hii ~regions from some of which molecular bipolar outflows were also detected (W51-e2, G35.20-0.74N). Nine of the European VLBI Network antennas were used to measure the linear polarization and Zeeman-splitting of the 6.7-GHz methanol masers in the star-forming regions of the First EVN Group. We detected a total of 154 CH3OH masers, one third of these towards W3(OH). Fractional linear polarization (1.2-11.5%) was detected towards 55 masers. The linear polarization vectors are well-ordered in all the massive star-forming regions. We measured significant Zeeman-splitting in 3 massive star-forming regions (W51, W48, and W3(OH)) revealing a range of separations -3.5 m/s<\Delta V_{z}<3.8 m/s with the smallest |\Delta V_{z}|=0.4m/s. We were also able to compare our magnetic field results with those obtained from submillimeter wavelength dust observation in W51 and show that the magnetic field at low and high resolutions are in perfect agreement.

          Related collections

          Author and article information

          Journal
          20 March 2012
          Article
          10.1051/0004-6361/201118658
          1203.4566
          33af265c-0e1e-4f4e-aec5-eeba982ee67c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          15 pages, 11 figures, 5 tables, accepted by Astronomy & Astrophysics
          astro-ph.SR astro-ph.GA

          Comments

          Comment on this article