12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural Abnormalities in Childhood Absence Epilepsy: Voxel-Based Analysis Using Diffusion Tensor Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: Childhood absence epilepsy (CAE) is a common syndrome of idiopathic generalized epilepsy. However, little is known about the brain structural changes in this type of epilepsy, especially in the default mode network (DMN) regions. This study aims at using the diffusion tensor imaging (DTI) technique to quantify structural abnormalities of DMN nodes in CAE patients.

          Method: DTI data were acquired in 14 CAE patients (aged 8.64 ± 2.59 years, seven females and seven males) and 16 age- and sex-matched healthy controls. The data were analyzed using voxel-based analysis (VBA) and statistically compared between patients and controls. Pearson correlation was explored between altered DTI metrics and clinical parameters. The difference of brain volumes between patients and controls were also tested using unpaired t-test.

          Results: Patients showed significant increase of mean diffusivity (MD) and radial diffusivity (RD) in left medial prefrontal cortex (MPFC), and decrease of fractional anisotropy (FA) in left precuneus and axial diffusivity (AD) in both left MPFC and precuneus. In correlation analysis, MD value from left MPFC was positively associated with duration of epilepsy. Neither the disease duration nor the seizure frequency showed significant correlation with FA values. Between-group comparison of brain volumes got no significant difference.

          Conclusion: The findings indicate that structural impairments exist in DMN regions in children suffering from absence epilepsy and MD values positively correlate with epilepsy duration. This may contribute to understanding the pathological mechanisms of chronic neurological deficits and promote the development of new therapies for this disorder.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study.

            Dysfunctional default mode network (DMN) has been observed in various mental disorders, including epilepsy (see review Broyd et al. [2009]: Neurosci Biobehav Rev 33:279–296). Because interictal epileptic discharges may affect DMN, resting-state fMRI was used in this study to determine DMN functional connectivity in 14 healthy controls and 12 absence epilepsy patients. To avoid interictal epileptic discharge effects, testing was performed within interictal durations when there were no interictal epileptic discharges. Cross-correlation functional connectivity analysis with seed at posterior cingulate cortex, as well as region-wise calculation in DMN, revealed decreased integration within DMN in the absence epilepsy patients. Region-wise functional connectivity among the frontal, parietal, and temporal lobe was significantly decreased in the patient group. Moreover, functional connectivity between the frontal and parietal lobe revealed a significant negative correlation with epilepsy duration. These findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interictal epileptic discharges. Abnormal functional connectivity in absence epilepsy may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Copyright © 2010 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffusion tensor imaging of neurodevelopment in children and young adults.

              Diffusion tensor magnetic resonance imaging (DTI) was used to study regional changes in the brain's development from childhood (8-12 years, mean 11.1 +/- 1.3, N = 32) to young adulthood (21-27 years, mean 24.4 +/- 1.8, N = 28). Mean diffusivity (Trace/3 apparent diffusion coefficient, ADC) and fractional anisotropy (FA) were measured in 30 regions of interest (ROIs) in 13 distinct brain structures. Correlational analysis was performed to detect changes within 8-12 years and within 21-27 years, and group analysis to compare childhood diffusion properties with young adult values. Increases of fractional anisotropy were seen in the genu of the corpus callosum, splenium of the corpus callosum, corona radiata, putamen, and head of the caudate nucleus within 8-12 years, and also between childhood and young adulthood. Reductions in Trace/3 ADC were observed in 9 of 13 structures within 8-12 years and into young adulthood as well. DTI demonstrates more widespread changes in the brain's microstructure with maturation than previous reports using conventional T1-weighted MRI scans. These findings suggest a continuation of the brain's microstructural development through adolescence.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                28 September 2016
                2016
                : 10
                : 483
                Affiliations
                [1] 1Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
                [2] 2Department of Neurology, Nanjing Children’s Hospital Nanjing, China
                [3] 3MEG Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH, USA
                Author notes

                Edited by: Christoph Braun, University of Tübingen, Germany

                Reviewed by: Juan Pablo Princich, Hospital Ramos Mejía, Argentina; Dhruman D. Goradia, Banner Alzheimer’s Institute, USA

                *Correspondence: Xiaoshan Wang 873734205@ 123456qq.com ; lidou2005@ 123456126.com
                Article
                10.3389/fnhum.2016.00483
                5039196
                33a2c199-14dd-4d07-a1bb-8e6ed808c66b
                Copyright © 2016 Qiu, Gao, Yu, Miao, Tang, Huang, Hu, Xiang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2016
                : 12 September 2016
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 41, Pages: 7, Words: 4977
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81471324
                Award ID: 81501126
                Categories
                Neuroscience
                Original Research

                Neurosciences
                childhood absence epilepsy,diffusion tensor imaging,voxel-based analysis,default mode network,structural impairment

                Comments

                Comment on this article