3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation-related tissue injuries after medical radiation procedures, such as fluoroscopically guided intervention (FGI), have been reported in patients. Real-time monitoring of medical radiation exposure administered to patients during FGI is important to avoid such tissue injuries. In our previous study, we reported a novel (prototype) real-time radiation system for FGI. However, the prototype sensor indicated low sensitivity to radiation exposure from the side and back, although it had high-quality fundamental characteristics. Therefore, we developed a novel 4-channel sensor with modified shape and size than the previous sensor, and evaluated the basic performance (i.e., measured the energy, dose linearity, dose rate, and angular dependence) of the novel and previous sensors. Both sensors of our real-time dosimeter system demonstrated the low energy dependence, excellent dose linearity (R 2 = 1.0000), and good dose rate dependence (i.e., within 5% statistical difference). Besides, the sensitivity of 0° ± 180° in the horizontal and vertical directions was almost 100% sensitivity for the new sensor, which significantly improved the angular dependence. Moreover, the novel dosimeter exerted less influence on X-ray images (fluoroscopy) than other sensors because of modifying a small shape and size. Therefore, the developed dosimeter system is expected to be useful for measuring the exposure of patients to radiation doses during FGI procedures.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Occupational dose in interventional radiology procedures.

          Interventional radiology tends to involve long procedures (i.e., long fluoroscopic times). Therefore, radiation protection for interventional radiology staff is an important issue. This study describes the occupational radiation dose for interventional radiology staff, especially nurses, to clarify the present annual dose level for interventional radiology nurses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Occupational eye dose in interventional cardiology procedures

            It is important to measure the radiation dose [3-mm dose equivalent, Hp(3)] in the eye. This study was to determine the current occupational radiation eye dose of staff conducting interventional cardiology procedures, using a novel direct eye dosimeter. We measured the occupational eye dose [Hp(3)] in physicians and nurses in a catheterization laboratory for 6-months. The eye doses [Hp(3)] of 12 physicians (9 with Pb glasses, 3 without), and 11 nurses were recorded using a novel direct eye dosimeter, the DOSIRISTM. We placed dosimeters above and under the glasses. We also estimated the eye dose [0.07-mm dose equivalent] using a neck personal dosimeter. The eye doses among interventional staff ranked in the following order: physicians without Pb glasses > physicians with Pb glasses > nurses. The shielding effect of the glasses (0.07-mm Pb) in a clinical setting was approximately 60%. In physicians who do not wear Pb glasses, the eye dose may exceed the new regulatory limit for IR staff. We found good correlations between the neck dosimeter dose and eye dosimeter dose (inside or outside glasses, R2 = 0.93 and R2 = 0.86, respectively) in physicians. We recommend that interventional physicians use an eye dosimeter for correct evaluation of the lens dose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures.

              Real-time maximum dose monitoring of the skin is unavailable on many of the X-ray machines that are used for cardiac intervention procedures. Therefore, some reports have recommended that physicians record the fluoroscopic time for patients undergoing fluoroscopically guided intervention procedures. However, the relationship between the fluoroscopic time and the maximum radiation skin dose is not clear. This article describes the correlation between the maximum radiation skin dose and fluoroscopic time for patients undergoing cardiac intervention procedures. In addition, we examined whether the correlations between maximum radiation skin dose and body weight, fluoroscopic time, and dose-area product (DAP) were useful for estimating the maximum skin dose during cardiac intervention procedures. Two hundred consecutive cardiac intervention procedures were studied: 172 percutaneous coronary interventions and 28 cardiac radiofrequency catheter ablation (RFCA) procedures. The patient skin dose and DAP were measured using Caregraph with skin-dose-mapping software. For the RFCA procedures, we found a good correlation between the maximum radiation skin dose and fluoroscopic time (r = 0.801, p < 0.0001), whereas we found a poor correlation between the maximum radiation skin dose and fluoroscopic time for the percutaneous coronary intervention procedures (r = 0.628, p < 0.0001). There was a strong correlation between the maximum radiation skin dose and DAP in RFCA procedures (r = 0.942, p < 0.0001). There was also a significant correlation between the maximum radiation skin dose and DAP (r = 0.724, p < 0.0001) and weight-fluoroscopic time product (WFP) (r = 0.709, p < 0.0001) in percutaneous coronary intervention procedures. The correlation between the maximum radiation skin dose with DAP is more striking than that with fluoroscopic time in both RFCA and percutaneous coronary intervention procedures. We recommend that physicians record the DAP when it can be monitored and that physicians record the fluoroscopic time when DAP cannot be monitored for estimating the maximum patient skin dose in RFCA procedures. For estimating the maximum patient skin dose in percutaneous coronary intervention procedures, we also recommend that physicians record DAP when it can be monitored and that physicians record WFP when DAP cannot be monitored.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                11 May 2020
                May 2020
                : 20
                : 9
                : 2741
                Affiliations
                [1 ]Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; nakamura.masaaki@ 123456nifty.com (M.N.); qqrm6wq9k@ 123456arrow.ocn.ne.jp (M.Z.); chida@ 123456med.tohoku.ac.jp (K.C.)
                [2 ]Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba, Sendai, Miyagi 980-0845, Japan
                Author notes
                [* ]Correspondence: inaba@ 123456med.tohoku.ac.jp ; Tel.: +81-22-717-8683
                Author information
                https://orcid.org/0000-0002-5382-6346
                Article
                sensors-20-02741
                10.3390/s20092741
                7248883
                32403386
                339d5f8f-f18b-4e26-839c-640a13012618
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 April 2020
                : 09 May 2020
                Categories
                Article

                Biomedical engineering
                developed dosimeter system,disaster medicine,fluoroscopically guided intervention,multi-channel sensor,medical radiation dose,radiation skin injuries,real-time radiation sensor

                Comments

                Comment on this article