44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes.

          Results

          Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon ( pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes ( aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLB aroG fbr tktA, when growing on glycerol, as compared to glucose.

          Conclusions

          The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines.

          Given the highly dynamic nature of mRNA transcription and the potential variables introduced in sample handling and in the downstream processing steps (Garson et al. (2009)), a standardized approach to each step of the RT-qPCR workflow is critical for reliable and reproducible results. The MIQE provides this approach with a checklist that contains 85 parameters to assure quality results that will meet the acceptance criteria of any journal (Bustin et al. (2009)). In this paper we demonstrate how to apply the MIQE guidelines (www.rdml.org/miqe) to establish a solid experimental approach. Copyright 2010. Published by Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes.

            Genome-scale metabolic models have a promising ability to describe cellular phenotypes accurately. Here we show that strains of Escherichia coli carrying a deletion of a single metabolic gene increase their growth rates (by 87% on average) during adaptive evolution and that the endpoint growth rates can be predicted computationally in 39 of 50 (78%) strains tested. These results show that computational models can be used to predict the eventual effects of genetic modifications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase.

              The sigma(S) (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little sigma(S), exposure to many different stress conditions results in rapid and strong sigma(S) induction. Consequently, transcription of numerous sigma(S)-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular sigma(S) level is achieved by rpoS transcriptional and translational control as well as by regulated sigma(S) proteolysis, with various stress conditions differentially affecting these levels of sigma(S) control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of sigma(S), which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of sigma(S) regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For sigma(S) proteolysis, the response regulator RssB is essential. RssB is a specific direct sigma(S) recognition factor, whose affinity for sigma(S) is modulated by phosphorylation of its receiver domain. RssB delivers sigma(S) to the ClpXP protease, where sigma(S) is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.
                Bookmark

                Author and article information

                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central
                1475-2859
                2012
                4 July 2012
                : 11
                : 46
                Affiliations
                [1 ]Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
                [2 ]Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
                [3 ]Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
                Article
                1475-2859-11-46
                10.1186/1475-2859-11-46
                3390287
                22513097
                3398a188-478f-40b3-9f48-a39dadfdaff9
                Copyright ©2012 Martínez-Gómez et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2011
                : 18 April 2012
                Categories
                Research

                Biotechnology
                Biotechnology

                Comments

                Comment on this article