23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Legacy oceanic plastic pollution must be addressed to mitigate possible long-term ecological impacts

      , , ,
      Microplastics and Nanoplastics
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scientific research over the past decade has demonstrated that plastic in our oceans has detrimental consequences for marine life at all trophic levels. As countries negotiate an international legally binding instrument on plastic pollution, the focus is on eliminating plastic emissions to the environment. Here, we argue that, while this endeavour is urgently needed to limit the negative impacts of plastic on ocean ecosystems, the reduction of the plastic flow to the environment should not be the sole purpose of the negotiations. Legacy oceanic plastic pollution is also a major concern that needs to be addressed in the coming Treaty. Plastic is ubiquitous and persistent in the environment, and its slow degradation produces uncountable amounts of potentially even more impactful micro- and nanoparticles. Thus, plastic that is already present in the oceans may continue to affect ecosystems for centuries. Recent global assessments reveal that microplastics could have a significant impact on biogeochemical cycles and microbial food chains within ocean ecosystems that may be equivalent to those of climate change. Therefore, we argue that cleanup initiatives are essential to avoid further longterm impacts of legacy oceanic pollution. The upcoming international negotiations to develop a new Global Plastics Treaty should aim at urgently reducing the flow of plastic to the marine environment while supporting innovative solutions towards efficient monitoring and cleanup of the legacy oceanic plastic pollution.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Marine pollution. Plastic waste inputs from land into the ocean.

          Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microplastics in the marine environment.

            This review discusses the mechanisms of generation and potential impacts of microplastics in the ocean environment. Weathering degradation of plastics on the beaches results in their surface embrittlement and microcracking, yielding microparticles that are carried into water by wind or wave action. Unlike inorganic fines present in sea water, microplastics concentrate persistent organic pollutants (POPs) by partition. The relevant distribution coefficients for common POPs are several orders of magnitude in favour of the plastic medium. Consequently, the microparticles laden with high levels of POPs can be ingested by marine biota. Bioavailability and the efficiency of transfer of the ingested POPs across trophic levels are not known and the potential damage posed by these to the marine ecosystem has yet to be quantified and modelled. Given the increasing levels of plastic pollution of the oceans it is important to better understand the impact of microplastics in the ocean food web. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation and fragmentation of plastic debris in global environments.

              One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood.
                Bookmark

                Author and article information

                Journal
                Microplastics and Nanoplastics
                Micropl.&Nanopl.
                Springer Science and Business Media LLC
                2662-4966
                December 2023
                November 13 2023
                : 3
                : 1
                Article
                10.1186/s43591-023-00074-2
                33985ef7-a141-4b8a-b7c2-b2f4f8ef3d25
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content126

                Cited by7

                Most referenced authors1,092