2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterns and driving factors of ecological stoichiometry in system of deadwood and soil in mountains forest ecosystem

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of our research was to identify the factors that most strongly determine the C, N and P cycles in the deadwood—soil system in mountains forest ecosystems. We assumed that the climatic conditions resulting from the location in the altitude gradient and rate of deadwood decomposition most strongly determine the C/N/P stoichiometry. A climosequence approach comprising north (N) and south (S) exposure along the altitudinal gradient (600, 800, 1000 and 1200 m a.s.l.) was set up. Spruce logs at different decomposition stages (III, IV and V) were selected for the analysis in Babiogórski National Park (southern Poland). We calculated the C/N/P stoichiometry for deadwood and soil samples to reflect the nutrient availability. Our research indicates a very strong influence of the location conditions in the altitude gradient on the C/N/P stoichiometry. The GLM analysis confirmed the importance of high elevation in shaping the C, N and P content. A strong correlation was confirmed between P content, N content and C/N ratio. A higher C/N/P ratio was found in deadwood compared to soil, regardless of location. Decaying wood is an important source of N and P and the degree of decomposition made a significant contribution to explaining the variability of C, N and P content. The obtained results indicate the need to leave deadwood in forest ecosystems in order to improve biogeochemical cycles. Deadwood, by having a beneficial effect on many components of the forest ecosystem, will improve its biodiversity and, consequently, its stability.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.

          Significantly more carbon is stored in the world's soils--including peatlands, wetlands and permafrost--than is present in the atmosphere. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. If carbon stored belowground is transferred to the atmosphere by a warming-induced acceleration of its decomposition, a positive feedback to climate change would occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback would be negative. Despite much research, a consensus has not yet emerged on the temperature sensitivity of soil carbon decomposition. Unravelling the feedback effect is particularly difficult, because the diverse soil organic compounds exhibit a wide range of kinetic properties, which determine the intrinsic temperature sensitivity of their decomposition. Moreover, several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed 'apparent' temperature sensitivity, and these constraints may, themselves, be sensitive to climate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial abundance and composition influence litter decomposition response to environmental change.

              Rates of ecosystem processes such as decomposition are likely to change as a result of human impacts on the environment. In southern California, climate change and nitrogen (N) deposition in particular may alter biological communities and ecosystem processes. These drivers may affect decomposition directly, through changes in abiotic conditions, and indirectly through changes in plant and decomposer communities. To assess indirect effects on litter decomposition, we reciprocally transplanted microbial communities and plant litter among control and treatment plots (either drought or N addition) in a grassland ecosystem. We hypothesized that drought would reduce decomposition rates through moisture limitation of decomposers and reductions in plant litter quality before and during decomposition. In contrast, we predicted that N deposition would stimulate decomposition by relieving N limitation of decomposers and improving plant litter quality. We also hypothesized that adaptive mechanisms would allow microbes to decompose litter more effectively in their native plot and litter environments. Consistent with our first hypothesis, we found that drought treatment reduced litter mass loss from 20.9% to 15.3% after six months. There was a similar decline in mass loss of litter inoculated with microbes transplanted from the drought treatment, suggesting a legacy effect of drought driven by declines in microbial abundance and possible changes in microbial community composition. Bacterial cell densities were up to 86% lower in drought plots and at least 50% lower on litter derived from the drought treatment, whereas fungal hyphal lengths increased by 13-14% in the drought treatment. Nitrogen effects on decomposition rates and microbial abundances were weaker than drought effects, although N addition significantly altered initial plant litter chemistry and litter chemistry during decomposition. However, we did find support for microbial adaptation to N addition with N-derived microbes facilitating greater mass loss in N plots than in control plots. Our results show that environmental changes can affect rates of ecosystem processes directly through abiotic changes and indirectly through microbial abundances and communities. Therefore models of ecosystem response to global change may need to represent microbial biomass and community composition to make accurate predictions.
                Bookmark

                Author and article information

                Contributors
                wojciech.piaszczyk@urk.edu.pl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 April 2023
                7 April 2023
                2023
                : 13
                : 5676
                Affiliations
                GRID grid.410701.3, ISNI 0000 0001 2150 7124, Department of Ecology and Silviculture, Faculty of Forestry, , University of Agriculture in Krakow, ; 29 Listopada 46 Str., 31-425 Kraków, Poland
                Article
                32946
                10.1038/s41598-023-32946-1
                10082023
                37029255
                338cb21d-e11b-4d61-98b7-3d5f8f630d26
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 January 2023
                : 5 April 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: DEC 2020/39/B/NZ9/00372
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2023

                Uncategorized
                biogeochemistry,ecology,forest ecology
                Uncategorized
                biogeochemistry, ecology, forest ecology

                Comments

                Comment on this article