6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Antioxidant and Immunity Activities of Quercetin in Isoproterenol-Treated Rats

      research-article
      1 , 2 , 1 , *
      Molecules
      MDPI
      isoproterenol, quercetin, ischemia, myocardial, antioxidant, immunity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was designed to evaluate the effect of quercetin on myocardial oxidative stress and immunity function impairment induced by isoproterenol in rats. To induce myocardial ischemia, Wistar rats were subcutaneously injected with isoproterenol (70 mg/kg). Blood immunity index, cardiac marker enzymes and antioxidative parameters in hearts were measured. It was found that the levels of blood AST, creatine kinase, NO, NOS, IL-10, IL-1, IL-8 and lactate dehydrogenase in isoproterenol-treated rats were significantly increased. The rats administrated with isoproterenol showed the declines in myocardial antioxidant enzymes activities. Administration of quercetin significantly ameliorated myocardial oxidative injury and immunity function impairment induced by isoproterenol. The results indicated that quercetin possesses activity against isoproterenol-induced myocardial oxidative injury and immunity function impairment, and that the mechanism of pharmacological action was related at least in part to the antioxidant activity of quercetin.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes

          In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxygen-derived free radicals in postischemic tissue injury.

            J M McCord (1985)
            It is now clear that oxygen-derived free radicals play an important part in several models of experimentally induced reperfusion injury. Although there are certainly multiple components to clinical ischemic and reperfusion injury, it appears likely that free-radical production may make a major contribution at certain stages in the progression of the injury. The primary source of superoxide in reperfused reoxygenated tissues appears to be the enzyme xanthine oxidase, released during ischemia by a calcium-triggered proteolytic attack on xanthine dehydrogenase. Reperfused tissues are protected in a variety of laboratory models by scavengers of superoxide radicals or hydroxyl radicals or by allopurinol or other inhibitors of xanthine oxidase. Dysfunction induced by free radicals may thus be a major component of ischemic diseases of the heart, bowel, liver, kidney, and brain.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A modified spectrophotometric assay of superoxide dismutase.

                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                10 April 2012
                April 2012
                : 17
                : 4
                : 4281-4291
                Affiliations
                [1 ]Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
                [2 ]Department of Internal Medicine, The People’s Hospital of Long Xian, Long Xian 721200, Shaanxi, China
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: luzhaoxy2012@ 123456yahoo.com.cn ; Tel.: +86-29-8477-7723; Fax: +86-29-8477-7723.
                Article
                molecules-17-04281
                10.3390/molecules17044281
                6268199
                22491677
                3365596a-6dde-4975-a31e-767f546070bf
                © 2012 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 21 March 2012
                : 21 March 2012
                : 22 March 2012
                Categories
                Article

                isoproterenol,quercetin,ischemia,myocardial,antioxidant,immunity

                Comments

                Comment on this article