16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

          Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sipuleucel-T immunotherapy for castration-resistant prostate cancer.

            Sipuleucel-T, an autologous active cellular immunotherapy, has shown evidence of efficacy in reducing the risk of death among men with metastatic castration-resistant prostate cancer. In this double-blind, placebo-controlled, multicenter phase 3 trial, we randomly assigned 512 patients in a 2:1 ratio to receive either sipuleucel-T (341 patients) or placebo (171 patients) administered intravenously every 2 weeks, for a total of three infusions. The primary end point was overall survival, analyzed by means of a stratified Cox regression model adjusted for baseline levels of serum prostate-specific antigen (PSA) and lactate dehydrogenase. In the sipuleucel-T group, there was a relative reduction of 22% in the risk of death as compared with the placebo group (hazard ratio, 0.78; 95% confidence interval [CI], 0.61 to 0.98; P=0.03). This reduction represented a 4.1-month improvement in median survival (25.8 months in the sipuleucel-T group vs. 21.7 months in the placebo group). The 36-month survival probability was 31.7% in the sipuleucel-T group versus 23.0% in the placebo group. The treatment effect was also observed with the use of an unadjusted Cox model and a log-rank test (hazard ratio, 0.77; 95% CI, 0.61 to 0.97; P=0.02) and after adjustment for use of docetaxel after the study therapy (hazard ratio, 0.78; 95% CI, 0.62 to 0.98; P=0.03). The time to objective disease progression was similar in the two study groups. Immune responses to the immunizing antigen were observed in patients who received sipuleucel-T. Adverse events that were more frequently reported in the sipuleucel-T group than in the placebo group included chills, fever, and headache. The use of sipuleucel-T prolonged overall survival among men with metastatic castration-resistant prostate cancer. No effect on the time to disease progression was observed. (Funded by Dendreon; ClinicalTrials.gov number, NCT00065442.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human dendritic cell subsets: an update

              Summary Dendritic cells (DC) are a class of bone‐marrow‐derived cells arising from lympho‐myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2‐2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte‐derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre‐DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                29 March 2021
                2021
                : 12
                : 641307
                Affiliations
                [1] 1Dendritic Cell Research, ANZAC Research Institute , Concord, NSW, Australia
                [2] 2Faculty of Medicine and Health, University of Sydney , Sydney, NSW, Australia
                [3] 3Department of Medical Oncology, Concord Repatriation General Hospital , Concord, NSW, Australia
                [4] 4Department of Medical Oncology, Chris O'Brien Lifehouse , Camperdown, NSW, Australia
                [5] 5Garvan Institute of Medical Research , Darlinghurst, NSW, Australia
                Author notes

                Edited by: Irina Caminschi, Monash University, Australia

                Reviewed by: Yifan Zhan, Walter and Eliza Hall Institute of Medical Research, Australia; Richard A. Kroczek, Robert Koch Institute (RKI), Germany

                *Correspondence: Georgina J. Clark georgina.clark@ 123456sydney.edu.au

                This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.641307
                8039370
                33854509
                33554905-ea7d-45ea-b939-bc1ab396c9a5
                Copyright © 2021 Sutherland, Ju, Horvath and Clark.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 December 2020
                : 12 February 2021
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 142, Pages: 19, Words: 12995
                Categories
                Immunology
                Review

                Immunology
                dendritic cell,vaccine,prostate cancer,tumor,immune system,immunotherapy
                Immunology
                dendritic cell, vaccine, prostate cancer, tumor, immune system, immunotherapy

                Comments

                Comment on this article