Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      End points of lactate and glucose metabolism after exhausting exercise.

      Journal of applied physiology: respiratory, environmental and exercise physiology
      Amino Acids, metabolism, Animals, Fatigue, Female, Glucose, Glycogen, Lactates, Oxidation-Reduction, Physical Exertion, Proteins, Rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To determine the extent of metabolite oxidation, rats were injected with [U-14C]lactate, -glucose, or -bicarbonate (n = 5, each) during rest or after continuous (CE) and intermittent (IE) exercises to exhaustion. Tissue analyses of resting rats, or rats killed following CE and IE and pulse injection with [14C]lactate or -glucose (n = 72, each), were used to determine the metabolic pathways of these two substrates. Oxygen consumption (VO2) declined rapidly for the first 15 min after exercise; thereafter, VO2 declined slowly and remained elevated above resting levels for 120 min. The slow phase of decline in VO2 during recovery did not coincide with lactate removal, which occurred within 15 min. Two-dimensional radiochromatograms produced from blood, kidney, liver, skeletal muscle, and heart indicated a rapid incorporation of 14C into several amino acid pools, including alanine, glutamine, glutamate, and aspartate. Four-hour postexercise recoveries (means of CE and IE) of injected [14C]lactate were lactate (0.75%), glucose (0.52%), protein (8.57%), glycogen (18.30%), CO2 (45.18%), and HCO3- (17.72%). Greater (P < 0.05) incorporation of 14C into protein and glycogen constituents after exercise, compared with rest, was demonstrated. Incorporation of [14C]lactate into glycogen represented a significant but only minor fraction of the metabolism of lactate after exhausting exercise. It is suggested that classical explanations of excess postexercise O2 consumption (i.e., "O2 debt") are too simplistic.

          Related collections

          Author and article information

          Journal
          7440296
          10.1152/jappl.1980.49.6.1057

          Chemistry
          Amino Acids,metabolism,Animals,Fatigue,Female,Glucose,Glycogen,Lactates,Oxidation-Reduction,Physical Exertion,Proteins,Rats

          Comments

          Comment on this article