41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antinociceptive Effect of the Essential Oil Obtained from the Leaves of Croton cordiifolius Baill. (Euphorbiaceae) in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Croton cordiifolius Baill. is a shrub known as “quebra-faca” and is used to treat inflammation, pain, wounds, and gastrointestinal disturbances in the semiarid region in the northeast of Brazil. In an ethnobotanical survey in the state of Pernambuco, “quebra-faca” use was cited in 33% of the interviews. Thus, we decided to evaluate the antinociceptive effects of the essential oil from C. cordiifolius (CcEO). Chemical analysis by gas chromatography-mass spectrometry revealed 1,8-cineole (25.09%) and α-phellandrene (15.43%) as major constituents. Antinociceptive activity was evaluated using murine models of chemically induced pain (writhing induced by acetic acid, formalin, capsaicin, and glutamate tests). Opioid and central nervous systems (CNS) involvement were also investigated. Regarding antinociceptive activity, CcEO (50 and 100 mg/kg) reduced the number of writhing responses induced by acetic acid and decreased the licking times in both phases of the formalin test. CcEO also was evaluated in capsaicin- and glutamate-induced nociception. While no effect was observed in the capsaicin test, CcEO (100 mg/kg) was effective in the glutamate test. Naloxone, an opioid antagonist, did not affect the antinociceptive activity of CcEO in writhing test. In conclusion, the antinociceptive effect of CcEO could be explained, at least in part, by inhibition of the glutamatergic system.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The formalin test in mice: dissociation between inflammatory and non-inflammatory pain.

          The formalin test in mice is a valid and reliable model of nociception and is sensitive for various classes of analgesic drugs. The noxious stimulus is an injection of dilute formalin (1% in saline) under the skin of the dorsal surface of the right hindpaw. The response is the amount of time the animals spend licking the injected paw. Two distinct periods of high licking activity can be identified, an early phase lasting the first 5 min and a late phase lasting from 20 to 30 min after the injection of formalin. In order to elucidate the involvement of inflammatory processes in the two phases, we tested different classes of drugs in the two phases independently. Morphine, codeine, nefopam, and orphenadrine, as examples of centrally acting analgesics, were antinociceptive in both phases. In contrast, the non-steroid anti-inflammatory drugs indomethacin and naproxen and the steroids dexamethasone and hydrocortisone inhibited only the late phase, while acetylsalicylic acid (ASA) and paracetamol were antinociceptive in both phases. The results demonstrate that the two phases in the formalin test may have different nociceptive mechanisms. It is suggested that the early phase is due to a direct effect on nociceptors and that prostaglandins do not play an important role during this phase. The late phase seems to be an inflammatory response with inflammatory pain that can be inhibited by anti-inflammatory drugs. ASA and paracetamol seem to have actions independent of their inhibition of prostaglandin synthesis and they also have effects on non-inflammatory pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice.

            Intraperitoneal administration of zymosan and acetic acid induced a dose-dependent nociceptive writhing response in mice. Lavage of the peritoneal cavities with saline reduced the number of total resident peritoneal cells and caused a proportional decrease in the nociceptive responses induced by these stimuli. Furthermore, the specific reduction of the peritoneal mast cell population by intraperitoneal administration of compound 48/80 also reduced the nociceptive responses induced by zymosan and acetic acid. In contrast, enhancement of the peritoneal macrophage population by pretreatment of the cavities with thioglycollate caused an increase in the number of writhes induced by both stimuli. These data suggest that the nociceptive responses induced by zymosan and acetic acid are dependent upon the peritoneal resident macrophages and mast cells. These cells modulate the nociceptive response induced by zymosan and acetic acid via release of tumour necrosis factor alpha (TNF-alpha), interleukin 1beta and interleukin 8. This suggestion is supported by the following observations: (a) pretreatment of the peritoneal cavities with antisera against these cytokines reduced the nociceptive responses induced by these stimuli; (b) peritoneal cells harvested from cavities injected with zymosan or acetic acid released both interleukin 1beta and TNF-alpha; (c) although individual injection of TNF-alpha, interleukin 1beta or interleukin 8 did not induce the nociceptive effect, intraperitoneal injection of a mixture of these three recombinant cytokines caused a significant nociceptive writhing response. In conclusion, our results suggest that the nociceptive activity of zymosan and acetic acid in the writhing model is due to the release of TNF-alpha, interleukin 1beta and interleukin 8 by resident peritoneal macrophages and mast cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPV1 shows dynamic ionic selectivity during agonist stimulation.

              Transient receptor potential vanilloid 1 (TRPV1) is an ion channel that is gated by noxious heat, capsaicin and other diverse stimuli. It is a nonselective cation channel that prefers Ca2+ over Na+. These permeability characteristics, as in most channels, are widely presumed to be static. On the contrary, we found that activation of native or recombinant rat TRPV1 leads to time- and agonist concentration-dependent increases in relative permeability to large cations and changes in Ca2+ permeability. Using the substituted cysteine accessibility method, we saw that these changes were attributable to alterations in the TRPV1 selectivity filter. TRPV1 agonists showed different capabilities for evoking ionic selectivity changes. Furthermore, protein kinase C-dependent phosphorylation of Ser800 in the TRPV1 C terminus potentiated agonist-evoked ionic selectivity changes. Thus, the qualitative signaling properties of TRPV1 are dynamically modulated during channel activation, a process that probably shapes TRPV1 participation in pain, cytotoxicity and neurotransmitter release.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2015
                2 March 2015
                2 March 2015
                : 2015
                : 620865
                Affiliations
                1Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Rua Coronel Nunes de Melo 1127, 60430-270 Fortaleza, CE, Brazil
                2Departamento de Antibióticos, Universidade Federal de Pernambuco, Rua Professor Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
                3Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua Alto do Reservatório, s/n, 55608-680 Vitória de Santo Antão, PE, Brazil
                4Instituto de Química, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho 3000, 50078-970 Natal, RN, Brazil
                Author notes
                *Rafael Matos Ximenes: ximenesrm@ 123456gmail.com

                Academic Editor: Olumayokun A. Olajide

                Author information
                http://orcid.org/0000-0002-4546-2976
                Article
                10.1155/2015/620865
                4363708
                33433c9f-dab6-4017-8517-c914c6e2a541
                Copyright © 2015 Lenise de Morais Nogueira et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2014
                : 28 January 2015
                : 29 January 2015
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article