18
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nitric Oxide: Exploring the Contextual Link with Alzheimer's Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal inflammation is a systematically organized physiological step often triggered to counteract an invading pathogen or to rid the body of damaged and/or dead cellular debris. At the crux of this inflammatory response is the deployment of nonneuronal cells: microglia, astrocytes, and blood-derived macrophages. Glial cells secrete a host of bioactive molecules, which include proinflammatory factors and nitric oxide (NO). From immunomodulation to neuromodulation, NO is a renowned modulator of vast physiological systems. It essentially mediates these physiological effects by interacting with cyclic GMP (cGMP) leading to the regulation of intracellular calcium ions. NO regulates the release of proinflammatory molecules, interacts with ROS leading to the formation of reactive nitrogen species (RNS), and targets vital organelles such as mitochondria, ultimately causing cellular death, a hallmark of many neurodegenerative diseases. AD is an enervating neurodegenerative disorder with an obscure etiology. Because of accumulating experimental data continually highlighting the role of NO in neuroinflammation and AD progression, we explore the most recent data to highlight in detail newly investigated molecular mechanisms in which NO becomes relevant in neuronal inflammation and oxidative stress-associated neurodegeneration in the CNS as well as lay down up-to-date knowledge regarding therapeutic approaches targeting NO.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and Alzheimer's disease.

            Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

              The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                21 December 2016
                : 2016
                : 7205747
                Affiliations
                1Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
                2Department of Otorhinolaryngology, H & N Surgery, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
                3East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
                4Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
                5Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
                6Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
                Author notes
                *Junyang Jung: jjung@ 123456khu.ac.kr and
                *Na Young Jeong: jnyjjy@ 123456dau.ac.kr

                Academic Editor: Nady Braidy

                Author information
                http://orcid.org/0000-0003-0484-4481
                http://orcid.org/0000-0001-8021-1024
                http://orcid.org/0000-0003-3946-5406
                http://orcid.org/0000-0003-2130-4719
                Article
                10.1155/2016/7205747
                5209623
                28096943
                333815b2-bb4a-44e1-90e0-1642dd0741ed
                Copyright © 2016 Nicholas Asiimwe et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 October 2016
                : 1 November 2016
                Funding
                Funded by: National Research Foundation of Korea
                Award ID: 2016R1A5A2007009
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article