1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stronger Speed Limit for Observables: Tight bound for Capacity of Entanglement, Modular Hamiltonian and Charging of Quantum Battery

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How fast an observable can evolve in time is answered by so-called the observable speed limit. Here, we prove a stronger version of the observable speed limit and show that the previously obtained bound is a special case of the new bound. The stronger quantum speed limit for the state also follows from the stronger quantum speed limit for observables (SQSLO). We apply this to prove a stronger bound for the entanglement rate using the notion of capacity of entanglement (the quantum information theoretic counterpart of the heat capacity) and show that it outperforms previous bounds. Furthermore, we apply the SQSLO for the rate of modular Hamiltonian and in the context of interacting qubits in a quantum battery. These illustrative examples reveal that the speed limit for the modular energy and the time required to charge the battery can be exactly predicted using the new bound. This shows that for estimating the charging time of quantum battery SQSLO is actually tight, i.e., it saturates. Our findings can have important applications in quantum thermodynamics, the complexity of operator growth, predicting the time rate of quantum correlation growth and quantum technology, in general.

          Related collections

          Author and article information

          Journal
          04 April 2024
          Article
          2404.03247
          33249859-6600-46b4-bbb9-04f68a771f76

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article