0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome sequencing identified a novel exonic microdeletion in the RUNX2 gene that causes cleidocranial dysplasia

      , , , , , , ,
      Clinica Chimica Acta
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.

          A transcription factor, Cbfa1, which belongs to the runt-domain gene family, is expressed restrictively in fetal development. To elucidate the function of Cbfa1, we generated mice with a mutated Cbfa1 locus. Mice with a homozygous mutation in Cbfa1 died just after birth without breathing. Examination of their skeletal systems showed a complete lack of ossification. Although immature osteoblasts, which expressed alkaline phophatase weakly but not Osteopontin and Osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in the cartilage. Therefore, our data suggest that both intramembranous and endochondral ossification were completely blocked, owing to the maturational arrest of osteoblasts in the mutant mice, and demonstrate that Cbfa1 plays an essential role in osteogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.

            We have generated Cbfa1-deficient mice. Homozygous mutants die of respiratory failure shortly after birth. Analysis of their skeletons revealed an absence of osteoblasts and bone. Heterozygous mice showed specific skeletal abnormalities that are characteristic of the human heritable skeletal disorder, cleidocranial dysplasia (CCD). These defects are also observed in a mouse Ccd mutant for this disease. The Cbfa1 gene was shown to be deleted in the Ccd mutation. Analysis of embryonic Cbfa1 expression using a lacZ reporter gene revealed strong expression at sites of bone formation prior to the earliest stages of ossification. Thus, the Cbfa1 gene is essential for osteoblast differentiation and bone formation, and the Cbfa1 heterozygous mouse is a paradigm for a human skeletal disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification.

              Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. To determine the contribution of osteogenic differentiation of VSMC to the pathogenesis of vascular calcification and the function of VSMC-derived Runx2 in regulating calcification in vivo. SMC-specific Runx2-deficient mice, generated by breeding SM22α-Cre mice with the Runx2 exon 8 floxed mice, exhibited normal aortic gross anatomy and expression levels of SMC-specific marker genes. Runx2 deficiency did not affect basal SMC markers, but inhibited oxidative stress-reduced expression of SMC markers. High-fat-diet-induced vascular calcification in vivo was markedly inhibited in the Runx2-deficient mice in comparison with their control littermates. Runx2 deficiency inhibited the expression of receptor activator of nuclear factor κB ligand, which was accompanied by decreased macrophage infiltration and formation of osteoclast-like cells in the calcified lesions. Coculture of VSMC with bone marrow-derived macrophages demonstrated that the Runx2-deficient VSMC failed to promote differentiation of macrophages into osteoclast-like cells. These data have determined the importance of osteogenic differentiation of VSMC in the pathogenesis of vascular calcification in mice and defined the functional role of SMC-derived Runx2 in regulating vascular calcification and promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells. Our studies suggest that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process.
                Bookmark

                Author and article information

                Journal
                Clinica Chimica Acta
                Clinica Chimica Acta
                Elsevier BV
                00098981
                March 2022
                March 2022
                : 528
                : 6-12
                Article
                10.1016/j.cca.2022.01.010
                35065050
                330779ad-c086-487e-863e-50110c6843cf
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article