Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptive Deadlock Avoidance for Decentralized Multi-agent Systems via CBF-inspired Risk Measurement

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decentralized safe control plays an important role in multi-agent systems given the scalability and robustness without reliance on a central authority. However, without an explicit global coordinator, the decentralized control methods are often prone to deadlock -- a state where the system reaches equilibrium, causing the robots to stall. In this paper, we propose a generalized decentralized framework that unifies the Control Lyapunov Function (CLF) and Control Barrier Function (CBF) to facilitate efficient task execution and ensure deadlock-free trajectories for the multi-agent systems. As the agents approach the deadlock-related undesirable equilibrium, the framework can detect the equilibrium and drive agents away before that happens. This is achieved by a secondary deadlock resolution design with an auxiliary CBF to prevent the multi-agent systems from converging to the undesirable equilibrium. To avoid dominating effects due to the deadlock resolution over the original task-related controllers, a deadlock indicator function using CBF-inspired risk measurement is proposed and encoded in the unified framework for the agents to adaptively determine when to activate the deadlock resolution. This allows the agents to follow their original control tasks and seamlessly unlock or deactivate deadlock resolution as necessary, effectively improving task efficiency. We demonstrate the effectiveness of the proposed method through theoretical analysis, numerical simulations, and real-world experiments.

          Related collections

          Author and article information

          Journal
          08 March 2025
          Article
          2503.09621
          3300510f-af95-454c-8a49-2faba4f8e190

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          7 pages, accepted to ICRA 2025
          eess.SY cs.RO cs.SY

          Performance, Systems & Control,Robotics
          Performance, Systems & Control, Robotics

          Comments

          Comment on this article