There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.
The emergence of a unified cognitive moment relies on the coordination of scattered mosaics of functionally specialized brain regions. Here we review the mechanisms of large-scale integration that counterbalance the distributed anatomical and functional organization of brain activity to enable the emergence of coherent behaviour and cognition. Although the mechanisms involved in large-scale integration are still largely unknown, we argue that the most plausible candidate is the formation of dynamic links mediated by synchrony over multiple frequency bands.
The International League Against Epilepsy (ILAE) Commission on Classification and Terminology has revised concepts, terminology, and approaches for classifying seizures and forms of epilepsy. Generalized and focal are redefined for seizures as occurring in and rapidly engaging bilaterally distributed networks (generalized) and within networks limited to one hemisphere and either discretely localized or more widely distributed (focal). Classification of generalized seizures is simplified. No natural classification for focal seizures exists; focal seizures should be described according to their manifestations (e.g., dyscognitive, focal motor). The concepts of generalized and focal do not apply to electroclinical syndromes. Genetic, structural-metabolic, and unknown represent modified concepts to replace idiopathic, symptomatic, and cryptogenic. Not all epilepsies are recognized as electroclinical syndromes. Organization of forms of epilepsy is first by specificity: electroclinical syndromes, nonsyndromic epilepsies with structural-metabolic causes, and epilepsies of unknown cause. Further organization within these divisions can be accomplished in a flexible manner depending on purpose. Natural classes (e.g., specific underlying cause, age at onset, associated seizure type), or pragmatic groupings (e.g., epileptic encephalopathies, self-limited electroclinical syndromes) may serve as the basis for organizing knowledge about recognized forms of epilepsy and facilitate identification of new forms.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.